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SUMMARY

The study is a part of an effort being directed toward solving the
problem of a composite material subjected to general oblique loading.

This analysis was conducted in order to find the internal micro-
mechanics of a fiber-reinforced composite due to transverse normal loading.
Special emphasis has been given to studying the stress distribution near
free surfaces, which led to solving a three-dimensional elasticity problem.
The numerical method of finite elements has been employed in this analysis,
On the other hand, it was necessary to study the behavior far from free
surfaces., For this purpose, a two-dimensional program was used. Findings
from these two approaches were anticipated, showing that stress conditions
become two dimensional a relatively short distance from the end of the
composite. Extensive parametric studies have been performed from the
combined outputs of these two schemes. Significant diagrams exhibiting
elastic properties of different composite materials have been obtained.
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for the U, S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia.
Mr. A. Gustafson was the Army project officer for this program.

This report covers the work accomplished during the period from
26 December 1967 through 26 December 1968.

Special acknowledgement is given to Dr. Gerhard Nowak for his invalu-
able assistance in the development of the three-dimensional solution and
algorithm of the numerical scheme and to Mr. Ted Neff, who performed the
computer programming.

|







TABLE OF CONTENTS

SUMMARY « . & &« &« & o o o o o o o o e &
FOREWORD , « « & ¢ o ¢ o o o o o o s o o
LIST OF ILLUSTRATIONS . . .« =« o « « o o o o
LISTOF SYMBOLS . . + ¢ « ¢« o « o ¢ o o o @
INTRODUCTION . . . ¢ ¢« o o ¢ o o o o o o
THREE-DIMENSIONAL SOLUTION . . . .« « & ¢« « o

THE STIFFNESS MATRIX OF A TETRAHEDRON ELEMENT . .

THE COMPOUND STIFFNESS MATRIX OF A LATTICE FORMED
BY A SYSTEM OF TETRAHEDRONS ., . . . .+ + «

DESCRIPTION OF THE NUMERICAL SCHEME . . . . .+ .
NUMERICAL RESULTS FOR THE THREE-DIMENSIONAL SOLUTION ., .
SOLUTIONS OF THE PLANE PROBLEMS o s e e 4 s e
NUMERICAL RESULTS OF THE PLANE PROBLEMS AND TEST RESULTS
APPENDIXES

I. PROBLEM OF FIBER-REINFORCED COMPOSITE SUBJECTED TO
TRANSVERSE LOADING SOLVED BY POINT-MATCHING METHOD

I1. COMPUTER PROGRAM FOR THE SOLUTION OF THE THREE-
DIMENSIONAL PROBLEM . . . . « « .+ « « o

COMPUTER PROGRAM FOR POINT-MATCHING METHOD .

DISTRIBUTION . ] . L] L] L] . . [} L] L] . . L] L]

vii

Page

iii

viii

13
35
41

45

55

72
94

120



Y

LIST OF ILLUSTRATIONS

Figure Page
1 The Elementary Tetrahedron . . . . . . . . . . . . . . . . 2
i 2 Basic Fiber-Resin Element . . . . . . . « . « . . . . . . 13
! 3 Hexagonal Array of the Fibers . . . . . . . . . .. . .. 15
4 Prismatic Representative Element . . . . . . . . . . . . . 15

5 Finite Elements of a Basic Representative Cross-Sectional

Area of Floor Number 1 Used in the Numerical Analysis . . 17

6 Tetrahedron Forming a Triangular Prism . . . . . . . . . . 18
x 7 Computer Flow Diagram to Determine Topological Property
of LatiBice Point . - . w o w = o = o @ o 4 e e e e oo ... 23
| 8 The [K*] Matrix Configuration . . . . . . . . . . . . . . 26
' 9 Computer Flow Diagram for Calculating the Stiffness
j Ma EriocR VKT IR S RS RIS ST S B s S P - % < 2 27
10 Computer Flow Diagram for Calculating Stress Components . 33
¢ 11 Cross Section of a Composite Under Transverse Loading . . 35
12 Longitudinal Stresses O, = s o e . . 36
13 Longitudinal Stresses o o o0 0000000002 o =6
= 14 Longitudinal Shear Stresses T I R 37
t 15 Longitudinal Shear Stresages T 37
16 Longitudinal Shear Stresses Opg * = = =t e e e 38
17 Longitudinal Shear Stresses N 38
18 Longitudinal Shear Stresses Opz = * ot e e e 39
; 19 Longitudinal Shear Stresses Opg = * " nr e e e 39
¢ 20 Longitudinal Shear Stressesg . . . « « . . . . . . . . . 4D
21 Longitudinal Shear Stresses Oug =t s st 40
; 22 Composite Under Transverse Load . . . . . . .. . .. . . 4l
23 Representative Element . . . . . . . ¢« & + « ¢« ¢« o « « . . 42
24 Finite Elements of a Basic Representative Cross-Sectional
: Area of Floor Number 1l used in Two-Dimensional Numerical
Analfysisy &l s Tl Gl sl Do [ e T G e e P A
25 Stress Trajectories of Transverse Loading . . . . . . . . 46
26 Radial and Tangential Stresses Along the Interface . . . . 47

viii

. : o Ml o AR s



P LT o

i LIST OF ILLUSTRATIONS (Continued)

= Figure Page
& 27 Stresses Along the Iaterface With Volumetric Content
Variable and Modulus Relationship Constant . . . . . . . . 48
28 Stresses Along the Interface With Volumetric Content
Variable and Modulus Relationship Constant . . . . . . . . 49
S 29 Displacement Component at the x-Direction . . . . . . . . 50 i
30 Transverse Modulus of a Composite as a Function of
Fiber and Matrix Modulus and Volume Percentage . . . . . . 51
31 Transverse Modulus of a Composite as a Function of
Fiber and Matrix Modulus and Volume Percentage . . . . . . 52
[ 32 Comparison of Transverse Modulus Obtained With
Ekvall's Formula and Computer Resulte . . . . . . . . . . 52
33 Comparison of Transverse Modulus Obtained With
Shaffer's Formula and Computer Results . . . . . ... .. 53
34 Element of Fiber-Reinforced Composites Under
Lateral Loading . . . . v . &« &+ ¢« v ¢ 4 4 ¢ o o ¢ ¢+ « o 63
35 Interface AXis . . & o ¢ ¢« ¢ v ¢« ¢ ¢« o o ¢ s 4 4« 4« s o + . 65

P A A S A I R A R

s TR T T S T
R

ix

b v A T R R (B A G G it P SR R AR B S a0 SRR L AL AT B R



LIST OF SYMBOLS

a fiber radius

a, (i = 1...12 constants), defined in equations
(1) through (3)

[A) matrix defined in equation (5)

(al, [B], [c] submatrices of a row of the partition

A,B,C,D constants

m’> m’ m’ m

A',B,C,D,E,F represent the corner points of the hexagon

b half of the distance between two neighboring
fibers

c half of the dimension in x~direction of a

basic element

c elastic stiffness matrix
fiber diameter

d height of tetrahedron

stiffness matrix

modulus of elasticity

Ef fiber modulus of elasticity

Em matrix modulus of elasticity

ET transverse modulus of elasticity of a composite

G shear modulus

i index number

I lattice point number

IM(1,1) defined by equation (48)

IM(2,1) defined by equations (49) & (52)

IM(3,1) defined by equations (50) & (53)

v matrix indicating nodal points sequences of
tetrahedrons

IKO matrix characterizing points of central symmetry

IM’ IE’ IB, ID’ IH Defined on Figure 7

hj index number

J lattice point number (equation (46))



LIST OF SYMBOLS (Continued)

k displacement in x-direction at x = c or defined
on Page 23

K* total stiffness matrix

. stiffness matrix
1]

K Ky LK oK 1 Ke 3K constants

KK Ko 'K constants

K LK LKy K LKy constants

4 length of the basic element of a three-dimensional
problem

M total number of force components or represents
the center of the fiber

MSK matrix of unknown displacements in a consecutive
order

M number of unknown force components or number of
known displacement components

M.,M R LB represent the points in Figure 2

n =3 (i-1)+j

[ 3

N NN LN node points

p number of tetrahedrons or number of floors

P represents a point in the tetrahedron or force

{ p¥} column vector of the nodal forces for the total
system

Pik) known force components

Pgu) unknown force components

q represents the direction of component at node
Foint

Q lattice point number (equation (47))
represents tetrahedrons

u displacement vector

u;u) unknown displacement components

u(k) known displacement components

Xi

e L e
(I




-,

e L s

u .uy,u»
{u*]

ruly))

vf’ m

X, ¥y, Z

a, B, v
G') B'-Y'

—
:/(I) = +1) -1

€
A
v
v

LIST OF SYMBOLS (Continued)

displacement vextor components in x, y, z
directions

column vector of the nodal displacements for
the total system

column vector of the nodal displacement

corresponding to the t;h tetrahedron

volume of tetrahedron

fiber and matrix volumetric content

strain energy

coordinates (see Figure 4)

represents topological

properties of lattice point of tetrahedrons

or 0 characterizing topological 4, 8, v
points respectively

strain matrix

L' ame constant

Poisson's ratio

Poisson's ratio of fiber
Poisson's rativ of matrix

Airy's stress function
stress matrix
local coordinates at nodal point of tetrahedron

angle between surface normal and x-coordinates

xii



INTRODUCTION

Only in the ideal case is the loading of a reinforced composite mate-
rial in the directions of the reinforcements. Normally, oblique loading
is encountered by the composite. To obtain the effect of oblique loading,
we must combine axial, shear, and transverse loadings. By doing so, we
can establish the stresses in the reinforcements and in the matrix as they
actually occur; we can then use these stresses for the development of a
strength theory based on such reliable data.

This report presents the case of transverse loading of a uni-
directional composite. The two different regions considered are (1) the
region close to the end of the fibers,where three-dimensional treatment
is applied, and (2) regions far from the end of the fibers, where the end
perturbations are not more effective and where a plane solution is
applied.

In both cases, the finite element method was applied successfully.
For the plane problem, we also intended to find a solution by using the
so-called point-matching or collocation method which was applied in
the solution of the longitudinal shear problem. However, the convergence
of this method was very poor for this case of transverse loading.
Appendix I gives the equations utilized, along with a description of the
form in which the point-matching method was used.

The plane problem was solved in both plane stress and plane strain
conditions by using the finite elemert method. Displacements, stresses,
and transverse moduli for different types of composites are given in
this report,
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THREE -DIMENSIONAL SOLUTION

The numerical approach used to evaluate a specified three-dimensional
boundary problem of lincar elasticity represents a first-order approxima-
tion method. This method is known as the method of finite elements. Its
concept is based on the assumption that the stress within small-volume
elements of the body is constant. This is precisely true if we consider
infinitesimal volume elements. For small-volume elements, this assumption
of constant stress proves to be a good model representation of reality.

It is convenient to consider small tetrahedrons as volume elements
because three-dimensional space can be subdivided into sets of tetra-
hedrons in a simple way. The assumption of constant stress within each
elementary tetrahedron is equivalent to the assumption of linear
displacement-vector-distibution within the elementary tetrahedron.

Compatibility and equilibrium conditions introduced at the tetra-
hedron node points lead to a system of linear algebraic equations whose
solutions represent displacements at the node points of the tetrahedrons.
From these displacements, we can determine the stresses within each
tetrahedron.

THE STIFFNESS MATRIX OF A TETRAHEDRON ELEMENT

In order to obtain the proper working equations, we have to consider
an elementary tetrahedron first and find the pertinent relations as far
as stress, nodal forces, ard nodal displacements are concerned.

Figure 1 shows a general elementary tetrahedron with the nodes N, ,

N; , Ny, and Ny . We assume that the three coordinates €j , m; , and
€i (i = 1,2,3,4) are known for each node point N; (i = 1,2,3,4) .

3I(z)

1{x) 1'(e)

Figure 1. The Elementary Tetrahedron.



Again, we can represent the displacement vector by a linear vector
function of the local coordinates € , 1, and { . The origin of the
local coordinate system coincides with node Ny . 1In this fashion, we
put the three displacement components at point P(§,m,{) , as follows:

u, = ay + ag £+ a3 N+ a, @)
uy— ag + ag E+ a; N+ ag { (2)
u, = a9 + af+ a M+ a,( (3)

The coefficients a;y...,8, are constants and subject to variance with
the geometric configuration of the tetrahedron as well as the displace-
ment configuration at the nodes. Let wuy, , uy., and uzy (1 = 1,2,3,4)
represent displacement components of the four node points. Then,we obtain
the following 12 relations from equations (1), (2), and (3):

X
ux2=a1+32§2+a3ﬂ2+a4@
U = @ +a, §5+ a3 My + a, (4
[ 3

ux‘=al+a2§4+a4'ﬂ4+a‘c‘
uyl=aa+ae§1+avT\1+aeC1
u = + aa €4 + a7 Na + ag
Ya ag 3 2 Ca
uy3=as+a5§3+:x7T]s+aeC:J

Ya

Yy T ag t o€ + a, " + a.§

Uz, T %t o8, + o, + 3,0,

Yz, T %t Aol t a,Ts + 2,0

Uge & doit 108 + a1k + a2l (%)
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In matrix form, relations (4) can be expressed as follows:

"uxn 1 00 00000O0GO0O0O0 O ay
Uy, 1 £, M, €, 0 0 0 0 0 0 0 O o
Uy, 1 €, 1, ¢ 0 0 0 00 0 O O a5
Uy, 1 €, M C 00 00 0 0 00 a,
uy, 0 00 01 yvo0O0O0O0O0 O ag
uya> 0 00 0 1¢€70,¢, 0000 4 u,> .
{u)’s 0 0 0 0 1 E€EyT3G, 0 O 0 0 as
uy, 0 0 0 0 1 e M¢ O O 0 5 dg
u, 0 00 00O0O0O0OT1 000 ag
Uz, 0 00 0000 0 1 €M, (s ER
Uz, 0 0 0 0 0 0 0 0 1 g3 7, (s ap,
0 00 0 00 0 01 a
("2 L S L)

Equation (5) can be written symbolically, such as
;u% = [A] ;af (b)

where {u} are the 12 displacements at the four nodes, {a} the {12 x 1}
matriv of the configuration coefficients a vees,a , and [A) the {12 x 12}
matrix as demonstrated in equation (5).

The six strain components €, , €y , €5 , y €xz » and €., dre
obtained immediately from equations (1{ (2), and (3) as follows:

Ay
SN
€xx 14 43
fyy T n T ¥
du
_ z
Sl
aux .a_ul
Gy T I 7 et



N

aux
€z -rc-#—g = a, + ag
1 z
e = Lt = agt ay, )

We denote (e) as the {6 x 1} matrix with the elements ¢ » €y » €2 ,
€xy 1 €xz » and €yz and write equation (7) sywbolically, as follows:

43
C - n 33
€yx 01 00 00O00O0TCO0O a,
€yy 0000O0OGOT1000O0 0O ag
<ezz>= ooooooooooooﬁa.w )
Ery 00100 10000O0UO00 as
€xz 00010000OCTI1O0O0O0 ag
€ 0000O0O0OO0O100O0T10 ag
yz
. / L. - a,q
M
fa
. J

If we use the short form symbol (D] for the {6 x 12} matrix in equa-
tion (8), we can write equation (8) in the symbolic short form:

fef = [o]iaf ®

Finally, we can obtain the six stress tensor components Oy » °y » Oz »
Oxy » Oxz » Oyz from Hooke's law:
(o, ) (w26 \ o 0o o | fe)
oy A 26 0 0 0 €y
{ og $ _ X A M2 0 0 0 < ez > o
Oxy 0 0 0 G 0 0 €xy
Oxz 0 0 0 0 G 0 €xz
\%yz / | 0 O 0 0 0 G \ €yz/

PP SIALA N IMAEE: YD
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with the meanings of X\ and G ,

—_E
2(1+v) (11)

and

MV
M= T (2w (12)

where E is the modulus of elasticity and v 1is Poisson’s ratio.

The symbol [C] stands for the {6 x 6} matrix of equation (10),
which is the elasticity matrix. Equation (10) therefore is, in short
symbolic form,

fo} = [c] {el (13)
Substitution of {e}] by means of equation (9) follows:
fof = [clp] {a} (14)
From equation (6), we can express {a} in terms of
fal = [a]” dul (15)

where [A]'l represents the inverse matrix of [A] . Therefore, equation
(14) is

fol = [clo](al™ {u (16)

Lxpression (16) is the working equation for calculating the stress
tensor {0} . In order to do this, it is necessary to know all 12 dis-
placement components at thke 4 ncdes. In general, whether or not each one
of them is given input quantities depends on the kind of boundary condi-
tions present, As a matter of fact, we are in general not free to choose
a displacement component arbitrariiy when the corresponding force compo-
nent has been fixed. Castigliano's theorem expresses this proposition
clearly, stating that in any linear elastic system, the force component
acting on the system in a certain direction is equal to the first deriva-
tive of the strain energy function with respect to the dispiacement in
the same direction. If we define W as the strain energy function of
the system, we can obtain a set of equations which relates the node
force component array to the displacement components, as follows:



Ly

-1

|

W proves to be a quadratic form in {u}, and therefore it is the right-hand

side of a linear function in {u} representing the desired relationship
between forces and displacements. Next, we have to obtain the strain
energy function W ,

The strain energy of an elastic body is the volume integral over the
elastic potential, such as

1
W = 5 vj( SHCH + cyey + g€, + oxyexy + O\ z€xz + oyzeyz)dv (18)

The integrand can be written symbolically [e]T {oc}, and since ¢ and ©
are ronstant within the region of integration, we get

o oe 3 jefThot Jar o Jeft ot v as)
where
Xa=X3 Ya™Nn 2334 €2 Ta (s
vV = % Xa=X3 Ya-Y1 23-% = % 82 b G (20)
X=X Ya N1 %477 S W G

is the volume of our elementary tetrahedron. Keeping in mind that the
volume must be positive regardless of the selected sequence of the node
points, the absolute value of the triple product in equation (20) is
indicated.

Relation (19) is the desired function,and all that is left is the
substitution of the proper linear expressions in terms of {u} ; namely,
expressions (16) and (9) in conjunction with (15). Substitution of {a}
by (19) issues the modified equation (9).

tel = [p][a]* {u} (21)

The transposed linear matrix {e)}T follows after applying the transposi-
tion rule twice, as follows:

e s e m——

7.<‘\ .
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fefT = {[0I[A17 Jub}T - {1417 Jut}T o)
- MT([A]‘I) T [p]" (22)

With equations (22) and (16), the strain energy function W can be
written in the following quadratic form:

wo= 2T ([a17) T [01° [e) [0 (a1 fu} (23)

Equation (23) leads to the desired force displacement relationship through
the second Castigliano theorem (17). Applying the differentiation rules
yields

feb = F([a1") T (01" [c] o] (A {u}
+ 3 {ufT([a1) T [0]" [c] [] (4] (24)

Repeated application of the transposition rule and observation that

[C]'r = [C] (the elastic matrix is a symmetric one) shows that the last
right-hand term is equal to the first term. We, therefore, get the system
of linear equations

feb = v([a]?) T (017 [] (0] [A]*}u} @5)

which contains the set of working equations to obtain the unknown displace-
ments for computing the stress tensor according to equation (16). We call

) = v([a]%) T [oIF [c][0][a]" (26)

the stiffness matrix. The stiffness matrix [K] is a symmetric one since
the matrix of elastic constants ([C] 1is symmetric, as pointed out above.
The matrix [A]~ depends only on the local coordinates of the tetra-
hedron nodes. Matrix (26) therefore depends only on the local coordinates
of the tetrahedron nodes and the elastic constants of the elastic medium
within the tetrahedron,

The physical significance of each K-matrix element can be demonstrated
by considering special load conditions at the nodes of the tetrahedron.



Let us assume that we want to interpret the meaning of the ijth
element of the K-matrix on the elemeat in the ith row and jth column., If
we set, in equation (25), all displacement components but the jth one equal
to zero and the jth displacement component equal to one (single displacement
conditiong, then the 12 force components become equal to the 12 coeff. ients
in the jt column. The value of the coefficients in the itP row and i
column is therefore the ith force component which must be present to maintain
all displacement components at zero except the jth displacement component,
which must be kept at unity. In general, we must apply 12 force components
to maintain this special strain condition of the tetrahedron in correspond-
ing with the 12 coefficients in the jth column.

The jth foree in particular acts in the same direction as the jth
unity displacement. Sinc the force is doing work on the sysiem, the
orientation of force and lisplacement in the jth direction must corre-
spond. This means that ali diagonal elements of the K-matrix must be
positive,

In many cases, it is the single unity displacement condition that
helps us to visualize intuitively the physical significance of certain
matrix elements.

3 THE COMPOUND STIFFNESS MATRIX OF A LATTICE
FORMED BY A SYSTEM OF TETRAHEDRONS

Any space region can be subdivided into systems of parallelepipeds
¢ and each parallelepiped into six tetrahedrons. In this way, the space
region can be built up by a system of tetrahedrons in the same way that a
two-dimensional region can be covered by a net of triangles.

If we consider an interior tetrahedron — that is, one completely
surrounded by four other tetrahedrons and whose node points are not
boundary points of the space regions — then it can be shown that each
node point must be common with node points of 17 or 23 other tetrahedrons 4
in the neighborhood of the tetrahedron being considered. This means that 5
the forces generated at a lattice point of interior space are the sum of
all forces generated by the 18 or 24 tetrahedrons,each having one of its

& node points coinciding with the lattice point being considered.

& ' Consequently, we can now see that, in general, the force at a lattice !
point will be affected by the displacements at each node of each of the -
18 or 24 connected tetrahedrons. This is evident since all proper force {

| equations from each of the 18 or 24 contributing tetrahedrons must be

k summed together in order to get the resultant force at the lattice point.

In this &' wmer, we get, in general, a linear relationship between the

compoundc. rorce ar che lattice point and all pertinent displacement

componen..’ .-nearing in all the 18 or 24 tetrahedrons conrected at the

lattice point.

o RSN e G BNEFNE LGP LU D Mt hiuby | D AI340r O p r—



Let us suppose that che ith Jattice point is connected to p tetra-
hadron., having the numerical sequence tl(i),tz(il...,tp(i). The elements
of this sequence are functions of the lattice point, as indicated by the
argument. The force vector at the ith lattice point is represented by its
three components

p (1)
pD) @27)
p{t)

The stiffness matrix of the tetrahedron t shall be expressed by

[K(t)] (28)

and the line elements of this matrix belonging to the fqrce components
1,2,3 at the lattice point i are

[K«.(t’i)

[Ke(t’i)] (29)

[k <e> 1))

The compound force at the ith qattice point is therefore

. t' » .
Pl(l) ; [Kl( 5 (1), 1)]
i N ti(i), 1 3
ML 2 [Ka( 34 1)) {u(tj)} (30)
p{t) i1 1<s(t_-'|(1), 1)]
wh { (t‘)} . ; .
ere u ] is the column nodal displacement vector corresponding to
the t, tetrahedron.

j

The "total matrix that is obtained ih this fashion for all N iattice
points is denoted by ({K*¥] , which is

P [Kl(tj(i)’i)]
) = Y| [0 9] (s1)

j=1 [Ka(tj(i),i)]

10



It 18 obvious that th~ configuration of tetrahedrons connected to a
lattice point i will be different when {1 1is a boundary point itself,

L (1)

The column vectcy { j } will contain lesser elements than the corres-

ponding matrix for interior lattice points.

We have distinguished between the force components belonging to a
lattice point i and in a certain direction (1, 2, or 3). This scheme has
the advantage of allowing us to know with which element we are dealing. 1In
order to use one index number to identify a force (or displacement) component
but still contain the informati-n of the lattice number { and the type of
direction (J =1, 2, 3), we introduce the index number scheme:

n = 3 -1)+j

(i=1,2...N; j=1,2,3) . In this way, the indices of components form
a sequence of natural numbers, and each number still contains the informa-
tion of being an x, y, or z component as well as the lattice index
nmber i . This information can be extracted easily, since

j = mod(n,3) + 1

where mod(n,3) is the remainder of division, n divided by 3, and

.
|

[%] + 1 if mod(n,3) # 0

ot (32)

[%] if mod(n,3) = 0

[ R
)

n . ) . . n
where [3] means the largest integer contained in the quotient 3 -

With matrix (31), the system of force components acting upon the
given configuration of lattice points can be expressed symbolically by

ERRSIT )

Since we use indexing of forces and displacements, the system of equations
(33) can be written in analytical form, such as

M
P* = K*. u¥ 34
' =1 E eR

11
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where { = 1,2,3...M . We assume now that there is M , the total number
ot force components, as well as displacement components. The matrix [K*]
will be one of M x M .

Because of applied forces and displacements introduced to the system,
there are some force components known and the remaining force components
unknowi.. The same is true for the displacement components in a complemen-
tary sense. If there are M; unknown force components, then there are
M - M known force components and there will be M - M  unknown displace-
ment components while there are M known displucements., Let us arcange
the equations (34) such that the first M equations express the equilib-
rium of the unknown forces and the rest express the equilibrium of the
known forces. In the same fashion, we arrange the terms in each equation
such that the first M terms contiin known displacements and the
remaining terms contdin the unknown Jdisplacements. Furthermore, we
distinguish by superindexing the known and unknown displacements and
forces with (k) and (u) . Then we get the following two systems of
equations:

My M
(v _ 2 : . (k) Z L% (u)
Pi = K*ij uj + . l'\ij uj (35)
j=1 j=M +1
where i = 1,2...4 , and
(k) 2 (k) . (u)
* K * u
P, = K,. u, K. . 36
i ; ij uJ + j§+1 i uj ( )

where i= M + 1, M + 2,,.. .M,

The last equation is & system of linear equations for the M - M
unknown displacements u§") , where 1= M +1 , M+ 2,. .M,

With the solution of equation (36), the unknown forces can be computed
from equation (35). Equation (36) is a nonhomogeneous linear system of
(M - M) equations:

M %
Z (uv) (k) 2: * (k)
Kt] uju " Pi - L Kij “j (37)
=M+ =1

where i=M + 1, M +2,..M.



In order to apply numerical methods to solve this system of equations,
it is necessary to re-index the unknowns by consecutive natural numbers.
This can be easily done by generating a number sequence (MSK matrix) that
contains the indices of the unknown displacements in a consecutive order,
The arguments of this sequence are now consecutive, natural numbers which
are the working indices for solving equations (37). By means of the MSK
matrix, it is now possible to identify each solution element with the
original index. The mair purpose of this scheme is to provide the capa-
bility to extract the information of location (lattice point index) and
direction (x, y, or z) of the displacement from the equation working index.

This capability is required in many instances; e.g., to satisfy the polar
symmetry conditions and to select the proper sequence of the 12 displacement
elements for each tetrahedron in order to compute the stresses. Stress
within a tetrahedron is computed according to equation (16). The stress
distribution for the three-dimensionsl region of elastic medium is then
obtained by applying certain boundary conditions.

In the following, the boundary problem will be specified and the
scheme of the numerical approach described.

DESCRIPTION OF THE NUMERICAL SCHEME

Definition .of the Boundary Problem

The main objective of this study is to investigate the effect of free
surfaces on the stress distribution within a fiber matrix composite under
loads transverse to the fiber,

Figure 2 shows this con-
figuration schematically. The
stress distribution problem here
is three dimensional. From this
figure, we can observe some
symmetry conditions if we assume
that the fibers form a periodic
network of hexagonals with one
fiber axis intersecting at each
apex and centroid of the hexa-
gonals (hexagonal A,B,C,D,E,F is
one of them),

Around each fiber cross
section, there is a hexagonal
such that another network of
hexagonals is formed. This
hexagonal is called the basic
fiber-resin element of the
system. In Figure 2, the
hexagonal A',B',C',D',E' F' Figure 2, Basic Fiber-Resin
is such an element. Element,

13
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Figure 3 depicts the top view of the intersection of the fiber-resin
element.

We consider now an external force acting in a plane normal to line
B',E' but at a distance which is a high multiple of distance B',E' away
from M . We call this the transverse load upon one system. Because of
symmetry of load and configuration conditions, the displacements at points
within the fiber axial-parallel planes going through lines M, , M; and
P, , P, are constant and in the direction of the external force. They
are oriented opposite each other but are of equal magnitude. All points
of the plane normal to line M,P, and containing point P, must have
displacements along the plane they generate. The same displacement con-
ditions exist for points in the plane paraliel to the one described above
but containing point M . Both planes are planes of symmetry for the
displacement contribution. In this way, there is a periodic repetition of
the displacement pattern which exists within the prism above the rectangular
cell M,N,M ,P; in the direction of the four planes of symmetry which are
the side planes of the prism. Therefore, we can study this transverse load
problem by the following boundary conditions, which are based on the new
coordinate convention for the basic prism shown in Figure 4.

OZ(X,y,o) «- 0 (38)
cxz(x,y,o) = 0 (39)
cyz(x,y.o) = 0 (40)
ux(tc,y,z) = K 1)
uy(x,i—;',z) = 0 (62)

aux

E_ (XIY}L) = 0 (43)

du

'3'3 (x,y,l) — 0 (44)
Uz(st)L) —~ 0 (45)

The last three equations indicate that the condition of plane strain
will be approached with increasing distance from the free surface z = 0,
The distance { can be chosen freely such that it will be more than four
times the dimension of the diagonal of the base triangle. This assumption
has been based mainly on St, Venant's principle. Our numerical results
verify the correct selection of ¢ in this respect.

14
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Figure 3. Hexagonal Array of the Fibers,
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Figure 4. Prismatic Representative Element.
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Within the region, two types of elastic materials are considered,.
The cylindrical bodies have the modulus of elasticity Eg¢ and Poisson's
ratio vf . Outside of the cylindrical domains, the associated elastic
constants are E_ and vy .

With these premises, it is now possible to compute the stresses by
applying the method of finite elements. In order to do this, it is first
necessary to subdivide the iterior of the above-specified three-dimensional
region into a system of elementary tetrahedrons.

The System of Elementary Tetrahedrons

In Figure 4, we refer to the free-boundary plane =z = 0 as "ground

floor." Furthermore, we define eight equidistant planes parallel to the
ground floor, and we call the nth plane the "nth floor." The top plane,
z= { , is referred to as the ''tenth floor." These 10 planes subdivide

the parallelepiped into nine 1iyers, each having the height d, = 4/9 .

Next, we have to subdivide each layer into prisms with triangular
bases, since each prism can be again subdivided into three tetrahedrons.
The simplest way to do this is to subdivide each layer in the same way,
which means that we erect a set of prisms on the ground floor, each prism
having the height 4 . Each layer will thus have the same layout of tri-
angular bases as the one on the ground floor. Figure 5 shows the way the
ground floor has been subdivided into 96 triangle bases (8 rows with 12
triangles in each row). Each triangle represents a prism with the height
of the layer thickness d, . The top triangle of the prism is a replica
of the base triangle and by itself is the base triangle for the next prism
above the second layer. In this fashion, all prisms in each layer above a
base triangle are identical geometrically. The base triangles are numbered
on the ground floor in a consecutive manner. Because of central symmetry
properties, only 55 triangles need to be considered. With the same scheme,
the lattice points at the ground floor are numbered consecutively in each
row and column. Because of central symmetry properties, the last point
on the ground floor is the crigin, which is lattice point number 32.
Continuation of the numbering starts with the lattice point above number 1
in the same manner as in the ground plane below. 1In this way, we can
calculate the corresponding lattice point number J 1in the pth floor above
the Ith lattice point by

J = I+ 32(p - 1) (46)

As pointed out earlier, the indices scheme of the force and dis-
placement components can be linked with the indexing scheme of the
lattice points. Consequently, the qth component (q = 1 is x-component,
q= 2 is y-component, and q = 3 is z-component) of the vector quantity
has considered the following index Q :

Q = 30 -1D+9 or Q= 314 32p-1)-1]+q (47)

16
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We call the prism above the base triangle between two ccnsecutive
floors the elementary prism, Since a triangular prism can be subdivided
into three tecrahedrons in several ways, we must establish some basic
rules. Three tetrahedrons in any triangular prism are generated through
intersecting the prism by two planes. These two planes are generated by
the three lines of diagonals in each of the three rectangles forming the
mantle of the prism. See Figure 6. Furthermore, it is necessary that
one diagonal line intersect the other two diagonals. 1In this way, all
three diagonals form a linked train of lines (train of diagonals)
with disconnected, or open, ends. The first basic rule we apply in order
to generate the tetrahedrons is the following: The diagonals of coincid-
ing rectangles belonging to adjacent prisms coincide.

al
51‘
vl
B' '
B
q',.'
YI
B\ I 11
I
¥ B
y I1
Y

Figure 6. Tetrahedron Forming a
Triangular Prism.
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At this point, we distinguish each point of the triangle base as to
the topological property of the train of diagonals with respect to the
relative position to the triangle base proper. A lattice point of a base
triangle at which two diagonal lines intersect each other is said to he
of a topological q-property. When two diagonal lines intersect at the
lattice point, then the lattice point considered has a topological
B-property. Finally, there is a lattice point topological v-property
when one diagonal goes through the lattice point under consideration
and the other diagonal goes through the lattice point above or below
the one under consideration.

The first conclusion from this is that a base triangle must contain
poiats of all three topological properties, The second conclusion that
follows from this topological consideration is that all apexes of base
triangles having one common lattice point are of the same topological

type.

According to the last theorem, it is therefore appropriate to thiak
in terms of topological properties of lattice points only. If we know
the topological property of each lattice point in a base triangle, we
know the lattice points of the four apexes for each of the three tetra-
hedrons above the base triangle. With reference to Figure 6, we can
state the following:

Tetrahedron I. The three base apexes are the three lattice
points of the base itself. The fourth apex is the pg-point
in the next floor (B8' in Figure 6),

Tetrahedron I1. The three base apexes are the q-point at
the base, the B-point above the base (8' in Figure 6), and
the y-point above the base (y' in Figure 6). The fourth
apex is the y-point in the base triangle,

Tetrahedron I1II. The three base apexes are the three lattice
points of the triangle above the base. The fourth apex is
the y-point in the base triangle.

The last three properties contain the algorithm to generate the four
lattice numbers corresponding to the four apexes of each tetrahedron. It
is therefore necessary to know the topological properties of each lattice
noint. In the numerical program, the coordinates of each ground floor
lattice point are stored as input quantities., With the information of the
lattice point numbers of the tetrahedron apexes, the associated point
coordinates can be selected and the stiffness matrix [K] of the tetra-
hedron can be computed according to equation (26). The sequence of four
lattice point indices corresponding to the four apexes is computed and
stored for each tetrahedron. 1In the numerical program, it is called the
IV matrix. This matrix is later needed to help identify the line and
column of the [K] matrix with respect to the displacement and force
indices (with the help of equation 47). After identification, a look-up
routine of the index number in the MSK matrix allows generation of the

19
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matrix [KY ] appearing at the left- and right-hand sides of equation (37).
This look-up routine is a screening process that is also used to accumulate
the proper terms of the force components.

The objective of this study was to autogenerate the IV matrix. This
was accomplished in two steps. The first was to generate ‘the three lattice
points for each base triangle (the nonordered sequence is the IM(J,1)
matrix in the program, with J = 1,2,3); the second was to obtain, from the
nonordered sequence, the @-B-y ordered sequence of lattice numbers (the
IM(J,2) matrix in the program, with J = 1,2,3). The algorithm for both
steps follows from some simple topological considerations.

The configuration of triangles in Figure 5 allows us to derive the

sequence of node point indices as a function of triangle index. Let
I < 48 be the triangle index. Then we have node 1, the lattice index,

IM(1,1) = 1+ [%] + [-I-—I%;E—)] (48)

with 1o(12) equalling zero if mod(1,12) = 1 , or one if mod(1,12) = 0 ,

IM(2,1)

IM(1,1) + (% 1 - (-1)[”2') + 7 %9)

IM(3,1) IM(1,1) + 7 (50)

The ratios in brackets indicate that the largest integer contained in the
quotient is taken.

For all triangles with numbers greater than 48, a mirror-image con-
figuration exists, and the lattice indices are computed according to the

following:
IM(1,1) = 1+ [-;—]+ [1—1%2—12—)] (51)
with Io(12) equalling zero if mod(1,12) = 1 , or one if mod(I,12) = O ,
IM(2,1) = IM(1,1) + 7 (52)
IM(3,1) = IM(1,1) + (% 1 - (-1)[1/2]) %7 (53)

So far, we have obtained the nonordered sequence of lattice point
indices for each triangle. Before we continue to obtain the set of @-B-y
ordered lattice point indices, it is appropriate to incorporate the central

20



symmetry condition existing with the problem. This symmetry affects all
displacements at lattice points with indices larger than 32,

Because of central symmetry of the displacement distribution, we have

ux(-x,-y,z) - -ux(x,y,z) (54)
uy(-x,-y,z) = -uy(x,y,z) (55)
uz(-x,-y,z) = +uz(x,y,z) (56)

This means that all displacement components at lattice points with the
indices beyond 32 remain dependent upon the independent displacement com-
ponents already introduced at the first 32 lattice points.

Because of equations (54) through (56), the axial-symmetric triangle
configuration has been chosen in Figure 5 and the last considered lattice
point 32 terminates at the origin. The force equilibrium equations of all
components at the first 32 lattice polnts (and of the corresponding points
in the floors above) therefore represent one complete set of independent
equations of the problem when relations (54) through (56) are taken into
account. In order to include all [K] matrix elements of triangles

. associated with all symmetrically independent (96 per floor) force com-
ponents, the [K] matrices up to triangle 55 must be computed. Displacement'

components for all lattice points above 32 are dependent according to relations

(54) through (56). Therefore, it is not necessary to introduce more dis-
placement indices or lattice point indices, but rather to use the certral
symmetry prope:ty in assigning the lattice index numbers for points beyond
32. 1If, in equations (48) through (53), IM is larger than 32, it will
be replaced by 64 - IM, and a weight number 1IKO = +1 will be attached
to this point. 1In this way, the displacement indices of the symmetric
points are made equal, but the weight number assigned to each lattice
allows us to distinguish between independent and symmetrically dependent
indices (and therefore displacements). For lattice points with index

4 numbers smaller than 32 (belonging to independent displacements), the IKO

value 1is zero.

i

In this way, a sequence of numbers to each base triangle, which is
called the IKO matrix, is generated along with the IM matrices. The
purpose of the IKO matrix is twofold:

1. To generate the coordinates for lattice points beyond index 32
" (only coordinates of lattice points 1 through 32 are given).

2, To multiply the K matrix elements with +1 or -1 Lefore collecting
by the summation process to generate [K*¥] . All elements
agsociated with displacement components at lattice points
smaller than 32 are multiplied by +1.

21
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[K]matrix elements associated with displacements in the z-direction,
for lattice points beyond 32, are also nultiplied by +1 before collecting.
However, the [K]lmatrix elements associated with displacements in the x- and
y-directions at lattice points beyond 32 are to be multiplied by (-1)
before additive storing in the matrix ([K*] . This scheme follows from
relations (54) through (56).

For iustance, in triangle 44 there is
IM(3,1) = 64 - 34 = 30
with IKO(3,1) = 1 ; in triangle 50 there is
M(3,1) = 30

with IKO(3,1) = 0 .

With the IM(J,1) matrix and the IKO(J,1) matrix generated, where
J=1,2,3 , the lattice points for a specified triangle are known. Since
the index numbei of the lattice point in the IM matrix does not reveal
whether it is an independent or axial-symmetric dependent point, the IKO
matrix carries this information for this purpose.

From the IM(J,l) matrix, we get the @a-B-Y ordered matrix by using
the topological pattern existing for the lattice points in each row. The
first row points alternate betwesen y-q points, the second row points
between B-y points, and the third row points between a-P points; the
fourth row shows the same cycling as the first row, and the fifth shows the
same cycling as the second row. We assign to each point with the lattice

number I a number (D(I) , such that

cxes

if I is a
+1 topological

o-point

(C)¢9)

[}

if I is a
-1 topological

B-point

oOw

if I is a
0 topological
y-point

Corresponding to the y-a alternation of the first seven lattice
points, the associated () values form a sequence 0,+1,0,+1,0,+#1,0 . The
next seven form a sequence -1,0,-1,0,-1,0,-1 , and the seven lattice
points in the third rcw form a sequence +1,-1,+1,-1,+1,-1,+1 .
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The following 21 numbers are periodic to the first 21. This sequence
of 21 numbers is identical with the elements of the sequence { @ (I) },
where I = 1,2,.,21 , with

1
oOm - %{l’“—%l- [2cos T+ 20) - 2cos T (34 2k)]

- (-1)k [1 - 2 cos % (-1 + Zk)] } (57)

with k = [I-Ie(7)/7] and with I,(7) equalling one if mod(I,7) = O
or equalling zero if mod(I,7) # 0 . Formula (57) serves as a guide in
making a decision about the topological property of the lattice point

having the index I . Figure 7 is a flow diagram of a version following
the logical content of formula (57) that was used in this investigation.

’

Given
Lattice Point I

1, = mod(1,21) if mod(1,21) # 0

I, = 21 if mod(1,21) = 0

IE(7) = 0 if mod(IM,7) # 0 /
IE(7) = 1 {f mod(Iy,7) = O
. [ Le1g(7)
B 7
ID = mod(IM,Z)
[H - mod(IB,J) -1
I = -1 /l I = 41
H T H
IH = 0
1% 0 I, F O 11, =0 11, # 0 I,=0 1, ¥ 0
1 is 1 is 1 is 1 1is 1 is 1 1s
a-point y=point B-point y=point B-point a-point

Figure 7. Computer Flow Diagram to Determine Topological
Property of Lattice Point.
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Going with each lattice point index through this routine, we generate

the @-B-y ordered vector {IM(J,D] , where J = 1,2,3 | with the meaning
IM(1,2) = 1index of q-point of a
IM(2,2) = index of B-point , EZ:ZICUIar (58)
IM(3,2) = 1index of y-point S triangle

With the {IM} matrix, the four lattice point indices of the apexes for
all three tetrahedrons above the base triangle follow immediately from the
above definition of generating the apexes of the tetrahedrons,

First tetrahedron above the Jth triangle:

IV(J,1,1) IM(1,2)

V({J,2,1) IM(2,2)
IV(J,3,1) = 1IM(3,2)

IV(@J,4,1) = 1IM(2,2) + 32 (59)

Second triangle above the Jth triangle:

V(J,1,2) = IM(1,2)

IV(J,2,2) = IM(2,2) + 32

IV(3,3,2) = IM(3,2) + 32

(J,4,2) = 1IM(3,2) (60)

Third tetrahedron above the Jth triangle:

IV(J,1,3) = 1IM(1,2) + 32
IV(J,2,3) = 1IM(2,2) + 32

IV(J,3,3) = 1IM(3,2) + 32

IV(J,4,3) = 1IM(1,2) (61)
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With the IV matrix, the set of four apex indices is bnown; therefore,
the coordinates of the aperes can be obtained and the elements of the [K]
matrix by means of equation (30) can now be computed. The IV matrix must
be saved, since it is used to identify row and column of the [K] matrix
as well as to generate the desired elements of the [K] matcix.

In the next section, a description is given of how the desired
elements of the matrix [K*] are generated from the matrices [K] .

Generation of the Matrices Required To Solve for
the Unknown Displacements

The main objective was to find the coefficient matrices of equacign
(37) and to find solutions for the unkown displacement components u(u ,
where j=M +1 , M +2, ..M. J

1 1

Earlier in this report, a detailed description was given of the gener-
ation of the elements of the matrix [Ki] . Equation (31) reveals the
algorithm for obtaining the coefficients of [K*] , and equation (37)
indicates which of the coefficients are actually used. These two prop-
ositions are observed in generating the matrix elements of equation (37).

The actual procedure calls for re-indexing of the unknown displace-
ments in a consecutive, natural number sequence, since the indexing derived
from the lattice point indices (see equation 47) represents a nonsequen-
tially ordered subset of natural numbers. Re-indexing is conveniently
done by means of the sequence containing the indices of unknown displace-
ment components (or known force components) as elements. This sequence is
called the MSK matrix and has been generated simply by picking up only
displacement indices which are unknown in accordance with boundary condi-
tions (38) through (45). The first three numbers in the first column at
each lattice point are the indices of the x,y,z displacements at that lattice
point. Behind each index is the argument number of its appearance in the
MSK matrix.

From the three-dimensional lattice configuration, wherein Figure 5
is the ground-floor portion, we can see that the first 80 equilibrium
equations contain terms involving the first 160 unknowns only. This is
because: the force components of the first floor are influenced by dis-
placement coefficients of the first and second floors only. The first
80 lines of the matrix [K* thus have nonzero elements in the first
160 columns only; all further columns contain zero elements.

The 80 equilibrium equations of all known force components at the
vecond floor (equations 81 through 160) are in general connected to un-
known displacements in the first, second, and third floors. This means
that the [K*] matrix clements for lines 81 through 160 contain, in general,
nonzero elements in the first 240 columns.
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The equilibrium equations of the third-floor force components are of
the same nature as the corresponding equations of the second floor. The
only difference is that all the unknown displacement coefficient indices
increase by 80. This means that the submatrix contained in lines 81
through 160 is repeated in lines 161 through 240, but that all columns are
shifted to the right by 80 columns, The same considerations apply for all
floors following. Matrix [K*] therefore contains three diagonal non-
zero submatrices which are the same in the entire matrix, except for the
first and last diagonal matrices. Figure 8 depicts the [K*] matrix.

Because the [K*] matrix is symmetric, only three different types
of 80 x 80 submatrices are involved in defining [K*] . These are
the submatrices [A],[B],[C] . This means that it is sufficient to gen-
erate the [K*] elements for the first 160 lines only. In other words,
only the proper elements of the [K] marrices of the set of tetrahedrons
between the first and third floors need to be taken into account in order to
generate [A],(B],(C]

The scheme applied to generate the matrix elements of the 80 x 80
matrix _[AS22] = E[A],[B]] and the 80 x 160 matrix [KS22] = [[B],
[C],[B]] is basically a screening routine applied to each [K] matrix
element extended over all [K] matrices of tetrahedrons in the first two
layers. The [K] matrix of a particular tetrahedron in the first layer is
identical to the [K] matrix °
of the tetrahedron that is
its second-layer counterpart.

Therefore, the [K] matrices e B R e e D e TR e
for the three first-floor 1wl e '
tetrahedrons above a tri- = I
angle aresufficient, for our i1 | ter | (e |
purposes, to generate [AS22] 3 |
and  [ks22] . ~: (s [ 1c1 | (o) |
o

In the process of giving °| i | tes | (e |
a program description, it was <
shown in the preceding sec- l o) | te1 | (a I
tion that the [K] matrix g | |
for each of the three tetra- ’l 81 | te1 | 1m |
hedrons above a base triangle @
is obtained. With the addi- l 1 |ier |l I
tional information gathered g
in this section, it is now °| o |
possible to identify each 2 | il Rl
element of the matrix with ol (8] | * |UB]
respect to that element of B — — — —
the matrix [AS22] or [KS22] * [C] when 720 x 80O + boundary condition

(including the right-hand-
side independent terms) to
which it will be added, A
diagram of this scheme, Fig- Figure 8. The [K*] Matrix
ure 9, shows how this is done. Configuration,

[C']) when 720 x 720 (broken 1ine matrix
for {ncorporated boundary conditions)
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L1

D6 all erisngles I = 1,55 ©) *

Do all tetrahedrons KJ = 1,3 44<z>~ +

For triangle 1, tetrahedron KJ matrix

is obtained (see page )

Do all floors K = 1,2

Do all lines of Ky {(I,KJ) ; i=1,12 _@_{

Find apex number M of tetrahedron and direction number
Mg of torce component corresponding to line i

{7)
&,

i
e R~ TP U

Calculate actual force index (see equation 47):
Ig = 3{IV(IL,KI,M) + (K-1) - 32-1]+ M,

(1V is known since it is generated to obtain
apex coordinates ol tetrahedron before comput- g

LY

Select estimated argument of MSK matrix such that associated
MSK element is as close as possible to the force index Iy

Iterate on MSK matrix until difference between MSK element &
If is zero or shows change of sign. Zero means If is element
of MSK, sign change means not. I will be either contained
in MSK matrix or not

OO

I¢ is contained in I¢ is not contained 4
MSK matrix in MSK matrix

5 —©

Figure 9. Computer Flow Diagram for Calculating The Stiffness Matrix [K*].




Register argument number I1 under which If has been identiflied in
MSK matrix (for which zero difference has been obtained). 11
represents the line number in matrix LASZZ] or [KSZZ] in which
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Since the IV matrix is generated for each triangle index I according
to Figure 9, the only input required for this routine is the x- and y-
coordinates of the 32 ground-floor lattice points.

After compl. ion of all the indicated looping processes, all of the
12 x 12 elements of each [K] matrix belonging to every tetrahedron
in the two layers have been screened and properly accumulated in the
matrices [AS22] and [(KS22] as well as in the independent vectors
[A21] and [K21] . Therefore, the elements of the matrices [AS22] and
[KS22) along with the independent vectors [A21] and [K2l] are complete
and considered to be generated. The matrix represented in Figure 8 is
therefore established. :

The systems of equations belonging to the Figure 8 matrix is undeter-
mined, since the matrix has 720 lines and 800 columns. The 80 missing
equations are obtained by taking the internal boundary conditions (43),
(44), and (45) — in other words, those '"inside" the body — into account.
In line with the first-order approximation used throughout this study, we
can enforce an approximate version of (43) and (44) by making all u and

uy components at the tenth floor equal to the corresponding u, and uy
components at the ninth floor. By corresponding U, and uy components, we
mean that the u and uy values for lattice points with the same x- and

y-coordinates in both floors are considered. Condition (45) is satisfied
by putting all u, values equal to zero at floor number 10. These three

additional conditions represent 80 linear equations which now supplement
the set of 720 linear equations with 800 unknowns (reference the Figure 8
matrix). The 80 equations are as follows:

“n(in720 T “n(i)+640 (62
Yn(ip720 = O (63)
where i =1,2...48 and j=1,2...32 . Here, n(i) 1is the sub-sequence

of the first 80 elements of the [MSK] matrix that contains only x- and y-
directed unknown displacement indices; m(j) is the sub-sequence that
contains elements of the[MSK]matrix associated with unknown z-directed
displacement indices.

The unknown with indices greater than 720 appear in the last 80
equations of the system of 720 equations. Matrix [B] represents the
coefficients for them. Substitution of equations (62) and (63) into
these last 80 equaticns modifies the set of equations to the extent that
matrix [B] is absorbed into matrix [C] .

We may write the last 80 equations in the following manner.
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* (u)
* ]Z: K 640+n(5) “640+n(j)

32
A * (u)
j=2:1 Ky 640+m (i) “64U+m(j)

48
+Y k¥ u(U)
& 1,72000(5) U720+ 0 (3)

32
§ &~ (u)
jé_: Ki,7206m(G)  ®720+m (§) (64)

where i = 641, 642, ... 720 . 1In equation (63), ‘we have the first sum
term, the [B] matrix term of Figure 8. The next two terms (the [C]
matrix terms), the last two terms (the [B) matrix terms), and the two
separate terms for the [B] and [C] matrices correspond to the separa-
tion into x- and y-directed displacements and z-directed displacements.
Now we substitute equations (61) and (62) into (63) and obtain an equa-
tion containing only displacement indices 561...720 :

. 640
03 0§ o
& 1= 1] ] J;561 J

48
* * (U)
+
J,Z_; (Ki,640+n(j) + Ki,7zo+n(j)> Y640+n(j)
32

* (u)
"LJZ; K, ,660em(j) “640+m(]) (65)
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where i = 641, 642, ... 720 . The first term (corresponding to the [B]
matrix and the independent term) is not altered. The second two sum terms
correspond to the new matrix [C']

According to equation (65), matrix [C'] can be generated in the
following manner. First, all column elements of the [Bl matrix with the
indices m(j) , where j = 1,2,...32 , are zeroed out. The matrix obtained
is called [B'] and is an (80 x 80) matrix. Matrix [C' is the sum of
matrices [C] and [B']

With the "internal" boundary conditions (61) and (62), along with the
system of equations based on the matrix depicted earlier in Figure 8, we
can obtain an equivalent system of 720 equations which correspond to
the matrix inside the broken line of Figure 8. 1In this case, the sub-
matrix [C] of the last line is replaced by the matrix [C'] .

Solutions for this system of equations have been obtained by apply-
ing the method of Choleski.* The accuracy of this method has been
verified by computing a test case for homogeneous material, so that
the stress and displacement distribution could bYe vblained by analytical
means.

For our boundary problem, the displacements in the homogeneous test
case are exactly linear. Therefore, the approximaticn used in this program
becomes an exact solution. The displacements obtain2d as solutions of
the system of 720 linear equations (using the Choleski m:thod) agreed
in the first 7 digits with the displacements ootained by analytical
means.

This test result carries with it the implication of the correctness
of the [K*] matrix coefficients. Correctness of the [K*] matrix is
maintained for the fiber-matrix case, since the scheme to generate
the eiements of [K*] is independent of input values.

Computation of the Stress Components

The stresses for each tetrahedron can now be calculated with the
use of equation (21), since all u's are now known; in other words,
they are either given or are solutions of the ufu) equations.

The remaining task is to find the 12 proper displacement components
in the correct order for each tetrahedron in every layer. This is

accomplished in a manner similar to the way the equation indices of a
[K] matrix element were obtained.

* Also known as Crout's scheme.
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In Figure 10, the scheme to obtain the six stress elements (the
o matrix) for each tetrahedron is demonstrated. Given are all known
displacements and the solution vector u(i) , where i = 1,2,...720 .

The meaning of the six stress components in the order appearing in
equation (16) is obtainable from equation (10):

o = O, 9 = Oy
= g s = O

% y Xz
= g, £ O

% 9 E yz

With all of the 0 components obtained, the stress distribution within
the three-dimensional domain can be obtained,since the coordinates of the
tetrahedron centroids are the field point coordinates of this distribution
approximation.
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Do all floors I, = 1,9

!

Do all base triangles I, = 1,55

®

J

1

Do all tetrahedron I = 1,3

i

Set counter K = 0

1

Dc all three displacement directions

Increase value of K, by one

K, = K, + 1

Compute actual index of displacement

I4 = 3[1v(15,15,K;) + (5, - 1) 32 - 1]+ K

Id > 864
Floor 10

Id < 864
Floor < 10

{3)——4
@=1,3—@j

Do all four tetrahedron apexes |
in order of IV matrix K,= 1,4

—

\IF/
K #3

Ke=3 \I/g

Dispiacement is in the
z-direction of the
tenth floor; therefore
is zero.

Id(Kz) =0

Displacement is in x- or y-direction
in tenth floor and must be equal to

corresponding displacement in ninth

floor. Thus reduce I by 96:

Id=Id-96

=

Figure 10. Computer Flow Diagram for Calculating Stress Components.
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After exhaustion of all K, and K,

-gument of MSK matrix such that all 12 displacements Dx(Kz)» where
nent is as close as possible to K,=1,2,...12, of tetrahedron I of
dex 1y triangle I, at Floor I are obtained

in proper order.

Now we can calculate the stresses
‘roneous, iterate on argument of for th%s particulaF tetrahcdrgn
ference between MSK clement and accord1ng to equation 536)» since
change of sign. Zero means Ig the matrices {C|(D]{Aa]™* = {cDa}
itrix; sign change means Iy is
:atrix (unknown or known dis-
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when matrices {K} were calculated
and then stored.

o = {coafin,}

I4 is not contained (:)
in M5K matrix The six o values are printed along
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? '
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next tetrahedron
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NUMERICAL RESULTS FOR THE THREE-DIMENSIONAL SOLUTION

Figure 11 depicts a cross section of a composite under transverse
loading. Figures 12 through 29 illustrate the variation of the stresses
in the fiber direction at the interface points, indicated in Figure 1},
in regions near the free end of the composite. These stresses, which
appear because of the difference of elastic constants in the fiber and
the resin, are similar to the stresses obtained with the plane stress i .
assumpticn for planes far from the free end.

The three-dimensional analysis shows the existence of shear stresses
Oyz and o.,, of considerable magnitude at the interface points depicted
in Figure 1¥. In fact, these shear stresses are abnut one-half the peak
shear stress o,, from the plane analysis. The numbers have been derived
from numerical calculations of the stresses within the area of triangle

41 (see Figure 5).
\\h-:::i;ii::>-_- ,

(O

Figure 11. Cross Section of a Jomposit~
Under Transverse Loading.
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SOLUTIONS OF THE PLANE PROBLEMS

In regions of the composite under transverse loading that are far
from the ends (see Figure 22), it is possible to realistically assume
plane strain or plane stress. It will be plane strain if the displace-
ment uz 1is constrained at the ends 2z =0 and z = { ; it will be
plane stress if the ends are free of loads.

12

M X

Element of
Analysis

Figure 22, Composite Under
Transverse Load.

It is assumed that the transverse loads P are applied to the com-
posite far from the chosen representative element of analysis. Also, it
is assumed that the composite cannot have expansions in the y-direction;
in other words, compared with the dimensions of the typical element, the
length of the composite is infinite in the y-direction,
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With these assumptions, the boundary conditions for the representative
element (Figure 23) are:

(ux) = constant = tk Resin
x=%c
L
(65) —¥—~-
(uy)y=t% = 0 ff
/
(cxy)y=t% S )

Figure 23. Representative Element,

At the interface, between the fiber and matrix, the following conti-
nuity conditions must be satisfied:

o m f _ m
u = u F u = u
X y y
(67)
£ _ m £ _ m
g O'n 3 ()'nt O'nt

The superscript £ indicates fiber and the superscript m indicates
‘matrix. The n and t are the normal and tangential directions at the
interface points, respectively.

Moreover, a symmetry condition exists for the displacements and, con-
sequently, for the stresses of the representative element. That is,
u Gy) = -u (ox,-y)
(68)

Uy(x’Y) = 'uy('xr'Y)

The stress distribution was solved using the finite element method
with the triangular net shown in Figure 24, This was explained in detail
for the three-dimensional solutions in the last section.
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Once the stress distribution is known, the transverse modulus of the

composite Ep can be found. 1In fact,

where

Then,

(69)

)

~ I

The total applied force P 1is obtained by adding the forces at the
x direction (0x : dimension at the y direction) for the triangles

bordering the boundary x = ¢

By divising equation (69) setting k = 1 by the modulus of the fiber

Ef , the nondimensional expression is obtained.

E
3 2 (70)

In the following section, numerical results of the two-dimensional
analysis are given.
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NUMERICAL RESULTS OF THE PLANE PROBLEMS AND TEST RESULTS

The trajectories of the principal stresses in the typical element of
a ccmposite material under transverse loading are represented in Figure 25,
The nonhomogeneity introduced by the presence of the fiber causes a devia-
tion in the trajectories with respect to the homogeneous case where the
trajectories are obviously parallel to the x and y axes, This fact
suggests the presence of stress concentrations, which will be demonstrated
effectively in the following discussion.

A parametric study was performed to evaluate the influence of the
matrix and fiber properties on the stress distribution., Figure 26 shows
the radial and tangential stresses along the interface for composites with
60 percent of the fibers containing the same matrix material but with
different fiber material. One composite has a modulus relationship of
Ef/Ep = 20, and the other has a relationship of Ef/Ep= 120 , These
correspond approximately to glass fiber and boron fiber composites with
epoxy resin, respectively, From the curves of the figure, it is possible
to deduct the slight influence the material of the fiber has in the stress
distribution., This conclusion is correct in all cases in which the fiber
is considerably harder in comparison with the matrix, as usually occurs in
most of the composites.

The nondimensional ordinates °r/°avg and T /oavg of the curves
were obtained by dividing the actual stresses o, and T.. by the average
stress Gayg found by averaging the stresses ¢, at the triangles 3, 12,

24, 36, 44 and 49,

Another parametric study was performed by taking the volumetric con-
tent as variable, keeping the modulus relationship Ef/Em constant, The

results are indicated in Figures 27 and 28, where the stresses along the
interface are plotted. As is easy to imagine, the peak stresses are greater
when Vp 1is increased.

Figure 29 indicates the displacement component at the x-direction for
composites with E'f/Em = 20 and 120 . 1In these curves it is possible to

observe the small influence of the fiber deformation in comparison with the
total deformation, which is carried almost completely by the matrix.

TRANSVERSE MODULUS

A parametric study was performed to compute the transverse modulus of
several composite types. Two different conditions were considered: (1)
plane stress on the x,y plane, and (2) plane strain on the same plane,
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Figure 25. Stress Trajectories of Transverse Loading.
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Figure 29. Displacement Component at the x-Direction.
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Figure 30 gives the transverse modulus of the composite Ep for a
plane stress condition, Figure 31 gives the modulus of the composite for
plane strain as a function of the modulus ratio Ef/Em , and by taking the
volumetric content as parameter. It can be appreciated that the influence
of the fiber modulus on the composite modulus is small, in accordance with
the displacement distributicn discussed previously.

Figure 32 gives a comparison of the transverse modulus obtained with
Ekvall's formula,

E F
E = —fm (71)

T VeE, + ViEe

and the results from the computer analysis,

12 1
10
8 =
Ep 6 b =0
E
m
ﬂ‘?-"_-__._.---"'"—__
4 <
0.6—
0.5—
2 =
0 1 1 i 1 1 ]
20 40 60 80 100 120
Eg
Y™E
m

Figure 30. Transverse Modulus of a Composite as a
Function of Fiber and Matrix Modulus and
Volume Percentage.
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d Figure 33 presents the comparison with respect to the Shaffer's
i formula,
Em
; 1 - (1 - E;)(O.SZM-\’Vf - Vf)
ET = Em Em for Vf<0.68 (72)
O 2 - o——
1 - 0.8247 Vf 1 E
f
and
¥
Em
= 7 3
E’l‘ Em) for Vf20.68 (73)
1 -Vl - — \
f Ef

As observed in the figures, the transverse modulus from the micro-
mechanical analysis is greater than the corresponding modulus in the
Ekvall and Shaffer formulas, especially for the higher volumetric contents.

|
]

The transverse modulus of a composite obtained by plane stress analy-
sis was presented in Figure 30 for different volumes and material contents
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of the reinforcement and the matrix. This modulus can be approximated
by the following formula :

B

—=[1+v ) + (l-V )
Eq Em( £ £
= = (74)
Em Ef

El;(l-vf) + ‘1+vf,

It is interesting to note that this formula is identical to Rosen's
formule* for longitudinal shear. The difference is that instead of the

G moduli, the E moduli of the different materials must be used as indicated
in equation (74). Allowing for little error for low fiber percentages

and Ef/Em<100 , this formula has an error showing a 4 percent higher trans-

verse modulus at higher values. The following is a formula which permite
errors of less than 1 percent for all possible combinatiens.

R E,
e = (11-78V’-} - 13V, + 3-78)1 E; + 6:666V, - 1-27 (75)

* B, W, Rosen, N. F. Don, and Z. Hashin, Mechanical Properties of Fibrous
Composites, NASA CR-31, Contract NAS-470, General Electric Corporation,
April 1964.
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APPENDIX I

PROBLEM OF FIBER-REINFORCED COMPOSITE SUBJECTED TO
TRANSVERSE LOADING SOLVED BY POIN'{-MATCHING METHOD

When the weight is the only body force, the plane strain problem can
be solved by finding the polynomial solution of the differential equation

2to,, e .t . 76)
ax* 3x%3y? ¥t

which satisfies the boundary conditions., In equation (76), 6 1is the
Airy stress function, Stresses and displacements are then defined as
follows :

o = giyg 77
oy = gi—% (78)
Oxy = T S:L% Lo
o = &2 [/(1-\;) giy% dx -V g-&] + £,(y) (80)
uy = 1’;\’ [[(1 v)a—-e-dy-\)b-e-]"'fz(x) (81)
The strains are
e = %;f - 2 (1-v) 5;9 g;%] (82)
.y %E} - Tv g%f-+ (1-v) ng] (83)

55

i

SRS



From equations (80), (81), and (84), we have

df df
B_Ji h_ﬁ E 2, 2}
dx + dy + axay TR + 5 0 (85)

The polynomial solution to the Laplace equation (harmonic equation) is
N
N ' _n'
Z ( ) (1y)" N
. N 2n _N-2 : N 2+l N-2n-1
= Z (iy)nx-n+ Z( )(iy) x o
2n

n=0 neg \2mtl
(N
2n

N N
" N -2n-
- Z (_l)n y2n xN 2n + i Z ( ) (-l)ny2n+lxN 2n-1
2+l
n=0
= 8, y) i X, (%5¥) (86)

(X+iy)N

[=]

n=

Therefore, the solution to the biharmonic equation, in region f(fiber) ,
is as follows:

f
g = ley" + l(axya t Kxy + K x + Kgy® +

2 3 2
Key + Ky + Kgx“y + Kgx3y + Kiox + l(llx2

(- 1)n y2n+1 2m-2u +

m
21 -
¢ :E: ( ) -1y y2n+1 2m-2mkl
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M
2mr+1 .
- § : Dm } : ( ) (_l)n y2n+2 x2.n 2n (87)
2mt+1
el

By substituting @§ from equation (87) into equations (77) through (8l),
the following stresses and displacements are obtained:

f
g, * 6K1xy + ZKax + 6K5y + 21(e +

M m

2m n 2(n-1) 2m-2m+l
E A E ( ) (2n)(2n-1)(-1) vy x +
m=2 <0

n=0
M m 5
m P =
Z B, 2 (2 ) (20+1) (2n) (-1)" y2A-L (2m-2n
n
m=2 n=0
L ® L f2m
2n-1 2m-2u+l
E e (2n+1) @t L) @ni(-1)2 ot e
=2 n=0
! 2 [2mh1
2 D Y (2n+1) (2m+2) (20+1) (-1)" y27 2720 (88)
me1 n=0

f =
cy 6K°xy + 2K.y + 6K1°x + ZK11 +
M m 5
m 3 =
Z A, Z ( )(2m-2n+1)(2m-2n)(-1)’n T, s A=A
2n
=2 n=0
M m
2m o
B, E (2 ) (2m-2n) (2m-2n-1) (1) 2L (2m-m-2
n
m=2 n=0
M

3 m
2m+1
Cy z (2n+1) (2m-2n+1) (2m-2n) (-1)" y20+L  2m-2n-1
=2 n=0

{Continued)
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M m
2m+1). L
i Z Dpy Z( ) (2m-2n) (2m-2n-1) (-1)" y2n+2 2m-20-2 9
2n+1
ﬂFl n-o

f = -31(1)'3 H 2K3y - KS - 3Kax3 - 2K9x -

O'xy
M m -
m - -
Z A Z (2 ) (2n)(2m-2n+1)(_1)n y2n 1 x2m 2n
n
=2 n=0
M m )
" - -
Z B Z ( (2n+1)(2m-2n)(-1)n y2n x2m 20-1
" 2n
m'2 n=0
- - 2nr+1
( 2n _2m-2n
e 20+1) (2m-20+1) (-1)" = .
Z " Z (2n+1) (ARl Y1)y
m=2 n=0
M m )
ml S
Z D Z (2e+2) (2m-2n) (~-1)" y2r1+1 x2m 2n-1 (30)
= 2n+l
m=1 ns=

u;E = E:f - {K1[3 ‘I-Vf)xay - (Z-vf)y3]+ K, [(I-Vf)xa -

(Z-vf)yﬁ] - KG(Z-Vf)y - K‘vf + 5K5(1-Vf)xy +
ol st ] o) -

l(1°[3 l_vf)ya + 3vfx=] - 2K XV + Wy (1'\)f)}+
¢

M m
1+\)f 2m ) -
TN L w2 [ o [
= o=

L _ . ls
y2(n 1) x2m 2mb2 Ve (2m-2at1) yzn x2m Zn]
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B e Agie Copis

M m
C Y Y (] e [ Gt
me=2 n=0

2n-1  2m-2n+l nHl 2m-2n-1]
y X X +

2
- V¢(2m-2n) y

M) =

2n+l 2m-2n+2

. i(zml) 1y [(1_Vf) Qotl) @2n)
2 n=0

3

2n-1  2m-2m2 2041 2m-2n]
y X X

- v (2m-2ntl) y +
E = 2+l
Z D -1)" (1_\, ) (2n+2) (2ntl) |
m 2n+1 f 2m-2n+1
m=1 n=0
y2n x2m-2n+l _ \)f(zm_zn) y2n+2 x2m-2n_
1+\Jf

i {-Kl[(l-vf)xa + 3vfxy3] - Ka(vaxy) - Ka(va)-
[k 3(1-vf)x=+ 3vfy=] - Ke(zvfy) - RV ¥
K,,[3(1-\’f)xy’ - (Z-Vf)x“] + K [(1-vf} yo - (z-vf)x=] +

tollsdon] +xalelonh] + e
S - = [2n n (2m-20+1) (2m-2n)
L w T () o [l o

y2n+1 x2m-2n-1 } \)f(2n) y2n-1 x2m-2n+1] +
M m .
m n (2m-2n)(2m-2n-1)
Z B, Z (2) (-1) [(1-vf) T )
n L
=2 n=0
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-2a- =
R 222 ooy g0 e 2n] .

M m
2nrtl
n (2m-2at+l) (2m-2n) |
Y cu Y (o) cOn [fvg) ot
m=2 n=0

y2n+2 me-Zn-l _ Vf(2n+1) y2n me-2n+1] +

M m
2ork1 B [ (2m-2n) (2m-2n-1)
D -1 1-v ’
Z m Z(znﬂ) -1 ( f) o
=1 n=0

2m+3  2m-2n-2 )| 2m-2n]
y X X

= \Jf(2n+2) y2 (92)

In order to satisfy the equation A(x,y) = §(-x,-y) ., the polynomial
solution to the biharmonic equation in region m(matrix) is simplified
as follows:

em = Elxya + -lzaxy + f(-eya + Eaxay + -lznx3+

M m 5
- 1 n 2o+l 2m-2ntl
C -1 +
Y. T ) [y O
=2 n=0
s - 2m+1
= n 2n+2 2m-2n X
D -1 x 93
Z [ Z {2n+1)( ot (93)
=1 n=0

The stresses and displacements can thus be found by combining equations
(77) through (81) and (93):

- - —
ox = 61(1)(}' + 21(6 +

M m
_ 2mt1 = i\
Z Cm Z ( ) (_1).1 (2n+1) 2ny2n 1 x2m 2n+1 +
2nt+l
m=2 n=0
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£
A
¢
4
E < Z 2artl
; v D = 1 2 2m-2n
m (-1)" 2o+2) 20t1) y (94)
m=1 n-O
E
i
B " - 6E'x + ZE +
{ Cy A%y T R
M m .
- mrt1
Z Con Z ( " (2m-2n+1) (2m-2n) y2n+1 x2m-2n-1 §
2mtl
=2 n=Q
= - 2ar+1
Z Bm Z (2 +1) (-1)° (2m-2n)(2m-2n-1) y2n+2 x20-2n-2 (95)
i. =1 n=0 .
i
S -3K.y3 - K - 31( ]
Txy 1}’ 3 X -

.? Z Z (2m+1) - T (2m+1) (2u-2eH1) 20 2m-2n _

TR

m
_ 2mt1
D 1?22 , 2n+l  2m-2n-1
Z Y (2m1) -1 (@2n+2) 2u-20) y2*1 (96)
k n=0
£ s
¢ Emux -
; E & 4 5
e i) Rt 2[1-va)y] +
[2 (l-v ) ] +K [-3v xdy - (1-\, ) ]+ Ky, [-29, ) [
2mt1 . \
[1-va) Woy + Z y SIL N
? /
20(20t1) 2n-1  2m-2m2 20+ _2m-2

(Continued)
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—

M

* ) D Zm (zm) (-1)"[(1-vm).(_2_f1+_2)_(2f‘il,

20+1 Zm-2n+1
mes 1 n=0
2 - + -2n-
y n x2m 2ntl ) vm(Zm-Zn) y2n 2 x2m 2n 1] (97)
Emum
= X - " - - 3 X - v Y
m—: K1[3Vn:<y3 (1 vm)x ] + K,( me) + xe( Zme) +
Ea [(l-vm) (Gxy? - 2%) - vmxs] + E11[2(1'\)'“)}’] ¥
M m
- 2mt1 2
whiedds 3 & ¥ [ e
=2 n=0 120+1
(2m-2n+1)(2m-2n) 2n+2 2m-2n-1
[(l'vm) 20t2 y u -
L 2 2w
2n  2m-2nt+l Z = Z n
2n+l X + D (-1)" -
\)m( )2 ] " (2n+1)
m=1 n=0
(2m-2n)(2m-2n-1) 2n+3 2m-2n-2
[l-v“‘ 203 y x -
Vm(2n+2) y2n+1 x2m-2n] (98)

A basic representative element of fiber-reinforced composites under
lateral loading is depicted in Figure 34. For the convenience of numerical
calculation, the boundary conditions for each assigned point of the element
are listed in Table I. The Cartesian coordinates of all points are listed
in Table II. The normal and tangential stresses at the interface are
shown in Figure 35. These stresses can be expressed as

6n = Oy cosdp + oy sindg ZTxy sin ¢ cos ¢ (99)

Te = Oy0x sin ¢ cos ¢ + Txy cosqy-sinam (100)
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TABLE I. LIST OF BOUNDARY CONDITIONS OF VARIOUS POINTS
No. of Total
Po"i:t Boundary Conditions Boundary ::in:: Boundary
3 Conditions® Conditions
1 c:- 1’:,-1':’-0 uf e ™ via®eo 6 1 6
2 °: . ':t - ':: “: EUE ue L 14 56
% °;' T:y":y'o uf e ook vie vt 6 1 6
4 a:y = o 2 9 18
H q:y - ut -k 3 1 3
6 q:y . ook 2 9 18
7 a:y - ek 2 & s
8 o:y - ek v =0 k| 1 k]
LI o Va0 2 12 26
10 a:y - Veo 2 3 6
Total 55 148
kAt each point.
TABLE I1. CARTESIAN COORDINATES OF VARIOUS POINTS
Point ' J No. of
No. x y Points
1 c-a % 0 1 1
? c-a cot ¢y -g - 8 sing) 3161' b 1,2,...,16 14
3 ¢ g -a 121 1 1
4 c--+j-l!5 % 1,2,...,9 9
s c -'2! 1 1
6 c -g- 1% Az 9
b b-a
2 N 2 v 1,2,3,4 nd
) ¢ H % 1 1
® 15 -2 0.1,2,...,11 12
10 15t -2 0,1,2 3
Total No. of Points 35
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ug =
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iy ®

0

Figure 35. Interface Axis.

ox cosip + oy sinfp + 254y sin @ cos @

(oy-ox) sin ¢ cos g + ny(cosch-sinacp)

ucosgp+vsing

(101)
-u sing +v cos ¢
c - acos g

(102)

b i
z'ﬂsnmi

Equations which satisfy the ten types of boundary conditions are

f

listed in this section. In these equations, oy (af,an,...,ora_,,a:',a[:,...,

a“) identifies the 19 unknowns (%,Bm,cm,nm,'ém,'ﬁm,x,i,wo,ﬁo) of equa-
tions (88) through (92) and (94) through (98).

bk Y2y iy o L

R T e
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TYPE 1 EQUATIONS

f b f m b m
ox|c-a,3:i]| - ax|c-a,7.ay] = 0
f b £} _ 0
OxylC-8r7:@§
m b m| _ 0
cxy C'a,z,di

f b £ m b m
ufc-a,5.a) - u c-a,i,u’i) = 0

b f
vc-a,-z-,c,\{i = 0

[ ]
o

b m
v c-a,f,ai)

TYPE 2 EQUATIONS

£ mil b _ i £l .
{gx[c-a cos(30 » 2 asin(30 » oy

ml._ mil b . fod m ol
ox[c a cos(30) 5 a sm( 30] ° ozi]}cosa(3o +
£ oy b _ . o £
{cy[c-a cos(30 » 5 - a sm(30 , ori] -
+

ml . _ mi) b, (ui m a(ﬂl
oy[c a cos[ 30) » 3 a sin 30] ° ai]} sin 30

{O;y[c-a co ) + 5 - 0 we{gl) . o]

(103)

(104)

(105)

(106)

(107)

(108)

m | mi) b ni m (nl =
gxy[c a cos(3o) y 5 - 8 sin(30 , cxi]} sin 15 0 (109)
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1) ¢ o) b i £
z{qy[c-a cos(30 » 2 a sin(3o q cvi]

mi. ol
cy[c a cos(30 ,

oo

- a sin H—i) 5 dl:] -
£ o} b _
ox[c-a cos(30 =)
L PO o
gx[c a cos(3o 5
£ mi}\ b oi) f
cxyl.c-a cos(30) » 5 - a sin( 30 ozi] =

g:y[c-a cos(g-%) , -121 - a sin(g%) , Q/T]} cos(% = 0 (110)

a sin n‘i) q af] -

o

) oi ol (. ymi
a 31n‘30 ’aiJ}SIH(IS

Elea cos|M) | B . 4 ainfmi)  E] .
{u [c a cos(3o) » 32 a s1n‘30 R di]
Mg codlml] B (nfoi m ni)
u [c a Los(30 » 2 a 81n130 q ai]}cos(3o +
i 4 i b _ Ll £l
x {v [c a cos‘:ﬁ0 » 9 a 81n(30) 5 a],]

| e cos|Zi) B L gqafmd) P i
g v [c acos(30 » 3 a sm(30 ,ai]} sin(30

0 (111)

£ i} b ool £
{u [c-a cos(30 » 3 a Sln(3o ’ ai] =

um[c-a cos(g‘g- s % - a sin(% R ar:]} sin(g-(i)- =
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- {ui[c-a cos(%) 3 % - a sin(g-g- , o

2

-

u?[c-a cos(%% 3 LI a sin(%% , a';l.]} cos(%% = 0 (112)

where

§ o= 1,...,14

TYPE 3 EQUATIONS

Cf(csh - a,O’f Om(cah = 8,y ) = 0
yl 2 i “yl 7’2 i
f( b_ LB L
O'xy sz »O’i
i (c b _ a,o7] = 0
Cfxy ’9 )Q’i)
f{ b
ux(c,-z- - a,(yi) = k
b m
ui(c,f - a,ai) = k
f( b a : um(c D a m) = 0
uy csz :ai ) )Ui

TYPE 4 EQUATIONS

where

j=1,...,9
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(115)

(116)

(117)

(118)
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,' -
£
{
£l _,.a b _fl _ 120)
uy(c a+ij,2,ai) 0 (
¢ where
j=1, ,9
TYPE 5 EQUATIONS
f b f = 0 '
I I . (122)
27
£ b £
2 = 123
uy c’ziai 0 ( )
TYPE 6 EQUATIONS
f b_.a f] .o
| o]+ o
2 where
f i=1,...,9
f b a f
. o8 = S
; u (C;‘.‘2 jl—o,ai) K (125)
1
; where
3N =N e 1
g. L}
'?
:.
TYPE_7_EQUATIONS ? ‘
: m b b-a m ¢ .
wiiere
j=1,2,3,4
69
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o A e o e

T o

where

j=1,2,5,4

TYPE 8 EQUATIONS

L b M
cxy T

TYPE 9 EQUATIONS

where

j=0,1,...,11

where

j=0,1,...,11

TYPE 10 EQUATIONS

where

j=0,1,2
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(129)

(130)

(137)

(132)

(133)



’

o, B STL

mf.ccab m] _ (134)
uy(j_3_’2’°’i) 0

where

j=0,1,2

The total number of equations is 148, but the total number of unknowns
to be determined (df, Qg yee-y U3y, a?, ag,...,aT;) is 19. Therefore, we
can use the method of Least Squares to obtain the results. When solving
the 148 simultaneous equations (103) through (134), we assumed that k =
-1

In theory, the Point Matching method was uvsed to solve the problem,
and the computer program is presented in Appendix II. The finite element
method was eventually used, however, since it was found that the Point-
Matching -method does not give good convergence in the solution.
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APPENDIX 11

COMPUTER PROGRAM FOR THE SOLUTION
QOF THE THREE-DIMENSIONAL PROBLEM

$J0B,91503-002. TED NEFF.
STAPE»SCR=202,40L.D=00+NEW=00,
RUN{S»999992460000)

SET(0)

LGO,

PROGKAM THREED(INPUT yOUTPUT » TAPES= INPUT s TAPE6SOUTPUT s TAPEL o TAPE2 )
COMMON/1/ MSK({1000)s KS22(80924053)1sIVI55+603)sX1(643)9X2(0s3),

1 X3(&s3): K21(82) +sKMX(12+12)sCDA(T203+55)

2 IN» MMy Py IPL, A21182) o X(32+2) » I1CO(H+3+55)

3 » CENT(3+3455) (174

DIMENSION AS22(380,240)

EQUIVALENCE (S5(19201 ),AS22)

COMMON /INPUT/ XNU(2)s E(2) oXLAMI2) o GI(2) » TMX(6+692) » DO

DIMENSION C(6+692) » TEMP(10)
DIMENSION S(80+8045)
EQUIVALENCE (KS22(19201)s5) + (CMX,+C)

THIS PROGRAMs WITH ITS ASSOCIATED SUBROUTINESs SOLVES THE THREE-
DIMENSIONAL STRESS PROBLEM BY THE METHOD OF FINITE ELEMENTS.

MM - HIGHEST NODAL POINT INDEX OF TRIANGLES IN GROUND PLANE
IN -~ HIGHEST INDEX NUMBER OF BASE TRIANGLE
IP - HIGHEST INDEX OF BASE PLANE NORMAL TO THE Z DIRECTION HAVING
THE DISTANCE [P#DZ FROM PLANE 2 = 0.
MM = 32
IN = 55
IP = 9§
READ 1000+ (TEMP(1)4122,10)
1000 FORMAT(10A8)
PRINT 1010+ (TEMP(I),s1=1,10)
1010 FORMAT(1H15»10A8)
READ 10019 DZsE(1)s E(2)s XNU(Y)s XNU(2)y DO
1001 FORMAT(6({S5Xs EBes))
DO 1 Is]lyMM
1 READ 1005s Ks» X{Ksl) s X(Ks2)
1005 FORMAT(I3+E1244+E1244)
DO 10 I=1,2
XLAMUTI)Y = XNUCTI®E(T) /7 {((1e4XNULI))I®({1a=2,%XNU(I)) )
G(1) = E(I) / (24%#(1.+XNUL])))

[aNaFaNalaNa¥aXa)

10 CONTINUE
C
C DERIVE C MATRIX CMX
C
DO 20 I=1+6
DO 20 J=1+6
DO 20 K=142
CMX(I9JsK) = 0o
20 CONTINUE
D0 25 I=1+2
' Ctlelel) = XLAMII)424%G(1)
C(242+1) = Cllelel)
Cl3e391) = Cllelsl)
Closbe]l) = GI(I)
CiS5+5+01) = Clhrhs])
Clbe69]) = Clhob,])
Cl2e101) = XLAM(I)
ClIelel) = C(2,1,1)
Cl3+2+]1) = C(24191])
Cll9291) = C(2+91,1)
Ctle39]) = C(2410])
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T e W e T W PSP Yo

WP TP T

Cl2e30]1) = Cl291s1)
25 CONTINUE
C PRINT OUT THE INPUT QUANTITIES

PRINT 1090 (XLAM(J) o Jm192)0lGiJ)oImLls2)s(XNU(J)sJU=]142)
1 (ElJ)vJI=1,v2)
1090 FORMAT(1H1» SXs9HLAMBOA(]1 95X s9HLAMBDA{2) s10X s 4HG(1)s10Xs4HG(2)
1 IXsSHNU(1) sOXsSHNU(2) 510X s4HE (113 10Xe4HE(2) /1Xs8(3XEL1Ye&)//7)
PRINT 1091y DZ» DO
1091 FORMAT(IH »12X92HDZ+12X+2HDO/X+2(3XsE1Llea)///)
DO 30 JU = 1,8
11 = 4%()=1)+1
12 = [1+3
1092 FORMAT(IH +4( TXs 2HX(91293Hsl)s TX92HX(s1293Hs2) )/XB(3XEl)ed)/)
30 PRINT 10929 ( (T T oI oTll=mIlnl2)o((XCTITal)oX(I1s2)),Ilel1,12))
C
C PR'NT OUT C MATRICES, 1 PAGE
C
PRINT 2001
2000 FORMAT(2H Coll /)
DO 5001 I=1,2
PRINT 20001
DO 5000 J=1,6
5000 PRINT 2002+(C(JsKs])sK=146)
5001 PRINT 2003
2001 FORMATI(1H1)
2003 FORMAY(/7/)
2002 FORMAT(1H +6(E13e694X))
CALL NOVWAK

C
C NOW HAVE COEFFICIENTS OF UNKNOWN DISPLACEMENT MATRIX
C AS22(80+160) 1S FIRST PARTITION ROW
C KS22(80X2404,1) IS USED FOR ROWS TWO THROUGH 8
C KS22(80X240+2) IS GENERATED IN CHL3D
C
CALL CHL3D
C
C  NOW HAVE UNKNOWN DI SPLACEMENTS IN SP(82+9) = S(1sl1s1)
C
CALL SIGMAS
STOP
END
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[a¥a¥a¥a]

(aNaNaNal

[aRaXal

SUBROUTINE

GETKMX(KJs 1)

COMMON/1/ MSKI1000)s K522(80924093) s1V(559493)sX1(493)9X2(443)

1 X3(44+3)
2 INy MM, 1
3 9 CENTI(3,3
DIMENSION
DIMENSION
EQUIVALENCE
EQUIVALENCE

THIS SUBROUTIN

K21(82) +KMX(12412)+CDA(T724+34+55)

Py IPLy A21(8B2) 4 X(32+2) 4 1CO(493,55)

+55) D2z

S5(80+80,+5)

AS22(804240)
(S119201 )sAS22)
(KS22(19201)5)

€ DERIVES THE (17x,2) K-M~"?1CES FOR USE

IN DERIVING ROWS OF THE BIG MATRIX K27

DIMENSION D
DIMENSION
DIMENSION X
COMMON /INP
REAL KMX

XT(72Y » DX(72}
JMX L1200 5 AMY S L1 2)
T(4)s LiA(L)y ZFin w)s ASIR(Gs4)
Ut/ XNU(2)s Lo oXLAMUZ)Y 5 G(2) 9 CMX(64692)

’

‘

5

DATA (DXT(J)sJ=19T72)/0e9le9l*0eslesl6*009les0es0esles0es0esley

1 9%0e0l

DATA (DX (J)sJd=1470)1/6%0e9les8%0eslesb6*0esles?0%0esles3*0esrles

1 9%0es 1

IF(IeLE.10)
IF(leLEe12)
IF({IeLEe21)
IF(leLEe24)
IF{leLEs32)

10 IREG = 2
GO T0 20

15 JREG = 1

20 CONTINUE

IREG = 1» FIB
IREG = 2» RESI

DO 30 IBC=

X1me) = x

ETA(IBC) =

ZETA(IBC) =
30 CONTINUE

GET INVERSE OF
ASTR(1+1) =

N -

ASTR(2+1) =
1
2
ASTR(3+1) =

N

ASTR(45]1) =
1

2

ASTR(1+2)
ASTR(2,2)
ASTR(3,2)
ASTR(442)
ASTR(1+3)

..5'0.'1.’9'0.’1. '0.'0..1.00./

e310%009le9b6%Desles2#¥0e9les3#0e/

GO 10 15
GO 70 10
GO TO 15
GO T0 10
GO TO 15

ER
N

294

1(IBCKI) = X1{Y9sKJ)

X2(IBCsKJ) = X2(1+KJ)
X3(IBCyKJI) = 213(14KJ)

AMX

XI(2)#(ETA(3)HZETA(4) — ETA(4)*ZETA(3))
=XT(3)1%(ETA(2)%ZETA(4)~ ETA(4)*ZETA(2))
+XI(G)*(ETA(2)*ZETA(3)= ETA(3)*ZETA(2}))
-(ETA(3)*7ETA(L) — ETA(4)#ZETA(3) )
+(ETA(2)%ZETA(4) - ETA(L)#ZETAL2) )
~(ETA(2)%ZETA(3) - ETA(3)#ZETA(2) )
(XI(2)*ZCTA(4) = XI(4)*Z2ETA(3))
=(XIi(2)%ZETA(4) - XTI(4)*ZETA(2))
+(XI(2)%ZETA(3) - XI(3)#Z2ETA(2))
~(XI(3)%ETA(4) =~ XI(4)RETA(3) )
+(XI(2)%ETAL4) - XI(4)IRETA(2) }
~(XI(2)*ETA(3) - XI(3)#ETA(2) )

O
{ETA(3)#ZETA(4) — ETA(4)I#ZETA(3) )
={XI(3)#ZETA(4) - XI1(4)%ZETA(3))
(XI{3)%ETA(4) - XI(4)#ETA(3))
O
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ASTR(24+3) = —(ETA(2)%2ETA(4) - ETA(4L)#ZETA(2))
ASTR(3,3) = (XI(2)%ZETA(4) = XI(4)*ZETA(2))
ASTR(493) = —(XI(2)*ETA(4)=XI(4)IRETA(2))
ASTR(1+4) = U,

ASTR({2+4) = (ETA(2)%ZETA(3) - ETA(3)RZETA(2))
ASTR{3s4) = —=(XI(2)#ZETA(3) - XI(3)%2ZETA(2})
ASTR(4s4) = (XI(2)®ETA(3) -~ XI(3)RETA(2) )

DELTA = XI(2) ®* (ETA(3)#ZETA(4) - ETA(4)#ZETA(3))
+ XI(3) & (=ETA(2)#ZETA(4) + ETA(4)®ZETA(2))
2 + X1(4) # (ETA(2)#ZETA(3) -~ ETA(3)#ZETA(2))
DO 35 IQ = 14
DO 35 IR = 14
35 ASTR(IQsIR) = ASTR(IQsIR) /7 DELTA
DO 50 IQ =1l.4
DO 50 IR =14
AMX (IQsIR) = ASTR(IQsIR)
AMX (1Q+44IR+4) = ASTR(IQsIR)
AMX (1Q+84IR+8) ASTR(1QsIR)

—

AMX (1Q+4,4 IR ) = 0.
AMX (IQ+8, IR ) = O
AMX (]Q+84,IR+4) = O,
AMX(IQ IR+4) = O,
AMX(IQ JIR+8) = Q.
AMX (IQ+44IR+8) = 0O,

50 CONTINUE
NOW AMX CONTAINS INVERSE OF A

V = ABS(DELTAY / 6.
CALL MXMULT (DX osAMX o KMX36912+12)
CALL MXMULT(CMX{(191 s IREG) sKMXsCDA(L1sKJs1}9s696912)

NOW HAVE CDA(I)
CDA IS (6 X 12)e SECOND SUBSCRIPT IS TETRAHEDRON NUMBER KJe

THIRD SUBSCRIPT IS BASE TRIANGLE INDEXe

DO 60 1Q =144

DO 60 IR =1l.4

AMX(IQsIR) =ASTR(IR»IQ)

AMX (1Q+44IR+4) =ASTR(IR,IQ)
60 AMX(IQ+8,IR+8) =ASTRI(IR,»1Q)

AMX NOW CONTAINS TRANSPOSE OF INVERSE OF A
CALL MXMULT(AMXsDXT 9 IMX912512+6)
CALL MXMULT( UMXsCDA(Y1sKJsI)sKMX912+6+12)
CALL MXCON(KMX9sKMXyV912412)

K MATRIX NOW IN KMX(JsK) » Jx1s12 » K=1912

40 RETURN
END
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SUBROUT INE NOWAK
COMMON/1/ MSK(1000)s KS22(80+24093)9IVI55+493)9X1(4+3)9X2(443)

1 X3(443) K21(82) +KMX(12+12)sCDA(T2+3+55) »
COMMON/1/ MSK(1000)s KS22(80924093)9IV(55+4152)9X1(443)9X2(493),

1 X3(443), K21182) sKMX{124+1219CDA1T293455) »

2 INs MM, IP, IPL, A21182) » XU32+2) o+ [CO(493,455)

3 » CENT(3+3455) Dz

CIMENSION AS22(80,240) »KX(90)sPAZ(3)
EQUIVALENCE (S(19201 )+AS22)

COMMON /INPUT/ XNU(2)s E(2) +XLAM(2) » G(2) » CMX(6+6+2) » DO 4
EQUIVALENCE (KS22119201)+0522)
DIMENSION S(8U»80+5)

DIMENSION Q522(12800) o+ PP(1000)
EQUIVALENCE (KS22(19201)+5S)

OIMENSION IM(3553) 5 LM(35+3)
DIMENSION IKO(3+2)

REAL KS22s K21 » KMX

THIS SUBROUTINE DERIVES ALL NON-ZERO COEFFICIENTS FOR THE UNKNOWN
DISPLACEMENT MATRIXe THE DISPLACEMENT MATRIX 1S (720X720)s AND IS
DIVIDED INTO 9 ROWS OF SUBMATRICES WHICH HAVE (80X80) ELEMENTS EACH.
AT MOSTs THREE OF THESE SUBMATRICES CONTAIN NON-ZERO ELEMENTSe THUS
DIVIDED INTO 9 ROWS OF SUBMATRICES WHICH HAVE (80X80) ELEMENTS EACH.
AT MOSTs THREE OF THESE SUBMATRICES CONTAIN NON-ZERO ELEMENTSe. THUS,
ONLY THESE THREE NON-ZERO SUBMATRICES ARE DEVELOPED.

SUSROUTINE NOWAK PUTS THE TWO SUBMATRICES OF INTEREST FOR THE FIRST
PARTITION ROW INTO AS22(80X160)e FOR ROWS TWO THROUGH EIGHTs THE
NON-ZERO SUBMATRICES REPEATe THESE THREE MATRICES ARE STORED IN
KS22(80X240+1).

THE TWO PARTITION ELEMENTS IN ROW NINE ARE GENERATED IN

SUBROUTINE CHL3D WHEN NEEDED ON THE NINTH PASS.

THE [INDEPENDENT TERMS CORRESPONDING TO ROW ONE WILL BE IN A21.
THE INDEPENDENT TERMS FOR ROWS TWO THRU NINZ WILL BE IN K21(B80»1)

X(Is+1) - X COORDINATE OF ITH NODAL POINT

X(I+2) = Y COORDINATE OF ITH NODAL POINT

DZ - DISTANCE BETWEEN TWO CONSECUTIVE BASE PLANES

E(1) - MODULUS OF ELASTICITY OF MEDIUM 1(FIBER}

£(2) - MODULUS OF ELASTICITY OF MEDIUM 2(RESIN)

XNU{1l) - POISSONS RATIO OF FIBER

XNU(2) - POISSONS RATIO OF RESIN

1COt4+3) - 2ZERO OR ONE

IKO(342) - ZERO OR ONE

DO - DISPLACEMENT IN X DIRECTION ATPLANE X= (SQRT(3,)/2,)%B

[aNaNaXalalaNaNalaNaNaNaNaNaNa¥ala¥a¥aNala¥a¥aXalaXaXaXaXaXaXaXal

PYF = 0o
PZF = Qe
PXS = O
i P2S = 0.
C P IS FORCE.
C F IS FRONT » S 1S SIDEs X»YsZ ARE DIRECTIONS
C
PAZ2(1) = Qe
PAZ(2) = 0.
PAZ(3) = Q.
C
C PAZ(1) 1S X COMPONENT OF FORCE AT PLANE Z=0(BOUNDARY LOAD)
C PAZ(2) 1S Y COMPONENT OF FORCE AT PLANE Z=0(BOUNDARY LOAD)
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PAZ(3) IS Z COMPONENT OF FORCE AT PLANE Z=0(BOUNDARY LOAD)
FOR PAZ(1) = PAZ!2) = PAZ(3)= 0 WE HAYE FREE SURFACE CONDITIONS.

105
100

102

1ol

103

109

108
104

12

IX = 0

JX = 0

DO 103 M = oMM
IF(MelLTe8) GO TO 100
IF(MOD(M97)eEQe0sOReMOD(M=1+T7)+EQs0) GO TO 101
DO 105 MN1=1,3

IX = IX + 1

JX = JX + 1

MSK{IX) = 3%(M=1) + MNI
PP(IX) = PAZ(MN1)
KX(JX) = IX

GO TO 103
IF(MeEQeleOReMeEQe?) GO TO 102
IX = IX + 1

MSK(IX)= 3#(M=1) + 2
PP(IX) = PYF

IX = X + 1

MSK(IX) = 3#(M~1)+3
PP{"X) = PZF

GO TO 103

IX = IX+l

MSK(IX) = 3aM

PPLIX} = P2S

GO TO 103

IX = IX + 1

MSK(IX)= 3 # (M-1) + 1
PP(IX) = PXS

IX = IX+l

MSK(IX) = 3#{M=1)+3
PPLIX) = PZS

ZONTINUE

IXMAX = IX

JXMAX = X

DO 104 N=1511

DO 109 IX = 1s IXMAX
MSK (N#* I XMAX+IX)=MSK{IX) + N & 3 % MM
PP(N* IXMAX+IX) = PP(IX)
DO 108 JX = 1y JXMAX
KXJIX=KX(JX)
PPIKXJIX+N®IXMAX) = O,
CONTINUE

00 169 I = 1, IN

IFF = ]

IFIMOD(192)4EQe0) IFF = =}
IF(MOD(1+12)EQe0)GO TO 2
IE12 = ©

GO TO &4

1E12 = 1

IM(1s1) = 1 +1/2 +(I-1E12)/12
IKO(1s1) = O

12 = 172

IF(MOD{1Z+2)¢EQe0) GO TO 6
IF(1.GT+48) GO TO 12
IM(2+1) = IM(1+1) +IFF + 7
IKO(2+1)= O

At A ML i R N S B o Sl e i
* - .
.
. .

GO T0 7
IM(351) = IM(1+1)+IFF
IKO(3s1) = O

7
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GO TO 7

6 IF(1eGTe48) GO TO 11
IM(2s1) = [M{1s1) ¢+ IFF
1KO(2+1) = O
GO TO 7

11 IM{391) = IM(1s1) + IFF + 7
IKO(3s1) = O

7T 1IF(1GTe48) GO TO 13
IM(3s1) = IM(1el) + 7
IKO(3s1) = O
GO TO 30

132 IM(2+1) = IM{1el) + 7
IKO(2+1) = O

30 IF(IM(1,1).GT¢32) GO TO 31
GO TO 32

31 IM(1lel) = 64 = IM(1s1)
[IKO(1s1) = 1

32 IF(IM(2+1)eGTe32) GO TO 33
GO TO 34

33 IM(2+1) = 64 - IM(2+1)
IKO(2+1) = 1

34 IF(IM(351)eGTe32) GO TO 35
GO TO 36

35 IM(3s1) = 64 - IM(3,41)
IKO(3+1) = 1

36 DO 20 K = 1,3

DETERMINE ALPHAy BETA, GAMMAs FOR EACH NODE IN EACH BASE TRIANGLE 1

DETERMINE ALPHA, BETA, GAMMAs FOR EACH NODE IN EACH BASE TRIANGLE I

K=1 CORRESPONDS TO POINT ALPHA
K=2 CORRESPONDS TO POINT BETA
K=3 CORRESPCNDS TO POINT GAMMA

IMM = MODI(IM(Ky1)»21)
IF(IMMeEQAO) IMM=21
IF(MOD(IMMs7).EQs0) GO TO 8

IE7= O
GO TO 10
8 IE7 =1

10 IBAR = (IMM=IE?7) 7/ 7
102 = MOD(IMMs2)
IH1 = MOD(IBAR,3) -1
IF(IH]1) 144515416

14 IF(1D2.EQsU) GO TO 17
IM(392) = IM{Kol)
IKO(3+2) = [KO(Ksl)
GO TO 20

17 IM(1:2) = IM(Ks1)
IKO(142) = IKO(Kel)
GO TO 20

15 IF(ID2.EQ.0) GO 'TO 18
IM(3+2) = IM(Ksl)
IKO(33s2) = IKO(Kel)
GO TO 20

18 IM(2+2) = IM(Ksl)
[KO(2+2) = IKOI(Ksl)
GO TO 20

16 IF (ID2.EQ.0) GO TO 19
IM(192) = IM(Ksl)
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IKO(1+2) = IKO(K»sl)

GO T0 20

19 IM(2+2) = IM(Ksl)
IKO(2+2) = IKO(Ks1)

20 CONTINUE

IF(MOD(1+2)4EQel) GO TO 27

< el e

LY = 2
MX = 3
MM]1 = MM "
MM2 = O
XM31 = D2 a
XM32= Q. 4
GO TO 26 b
27 LX = 3 Z
MX = 2
MMl = O
MM2 = MM
XM31 = Q.
XM32= D2
26 IV(Islel) = IM(Is1)
IV(1+42s1) = IMILXel)
IV(Is3s1) = [M(MXsl)
IVIIsbsl) = [M(292) + MM
IV(I91s2) = [M(142) ;
IVII92+2) = IMILX92) + MM] E
IV(1s34+2) = [M(MX92) + MM2
IV(Is4s2) = IM(3+2) + MM !
IV(I9193) = IM(1s]l) + MM A
IVIIs2s3) = IM(MXsl) + MM
IV(I9393) = IMILXel) + MM

IV(1+4,43) =

IM(1,2)

MATRIX Iv RELATES THE NODES TO THE TETRAHEDRONS

FIRST INDEX OF Iv IS THE BASE TRIANGLE INDEX 1
SECOND INDEX 1S NODE POSITION WITHIN TETRAHEDRON I
THIRD INDEX IS THE NUMBER OF THE TETRAHEDRON ABOVE BASE TRIANGLE I
THIRD INDEX IS THE NUMBER OF THE TETRAHEDRON ABOVE BASE TRIANGLE I
X3(1s1) = 0, 3
X3(291) = X3(1lsl)
X3(351) = X3(1s1)
X3(491) = X3(1s1) + D2
X2(1s2) = X3(1s1)
X3(2+2) = XM31
X3(3:2) = XM32 .
X3(492) = X3(4s1) o
X3(1+3) = X3(4,1)
X3(2+3) = X3(4,y1)
X3(3s3) = X3(4,1)
X3(4s3) = X3(1,1)

X1(1sJ) IS THE X COORDINATE OF THE ITH NODE OF THE JTH TETRAHEDRON i .

X2(1sJ) IS THE Y COORDINATE OF THE ITH NODE OF THE JTH TETRAHEDRON : I

X3(1sJ) IS THE 2 COORDINATE OF THE ITH NODE OF THE JUTH TETRAHEDRON Lot
ABOVE THE CURRENT BASE TRIANGLE '

ICOt1slsl) = IKO(1s1)
ICO(2s1s1) = IKO(LXs1)
ICO(3+191) = IKO(MXs1)
ICO(4slsI) = 1KO(2+2)
1CO(1+2s1) = IKO(142)
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50

CENT{1+J4K)

JICO(2+29]1) = [KOILXs2)
ICO(3<291) = IKO(MXs2)
1CO(40291) = TKO(342)
ICO(1s3s]) = IKO(1s1)
1CO124+35]) = IKO(MXs1)
1CO(3s3s1) = IKOUILX»])
ICOt49391) = IKO(142)

DO 50 IC1 = 1.3
DO S0 1C2 = 143

CENT(IC1,1C2s1) = 0.

DO 98 KJ = 193

X1(19KJ) = X{MODCIVIIsloKJ)sMM) ol )% (=1)##]1CO(1sKJoI}
X2(1sKJd) = X{MODIIV(IslsKJ)sMM) 2 )% (-1)1221CO(1sKJ»!)
X1(2sKJ) = X{MOD(IVII+2sKJ)sMM} 1) % (=1)#R1CO(2sKJIy!])
X2({2sKJ) = XIMODCIVI(I92eKJI)sMM) 42 )% (=1)881C0O(2:sKJy!l)
X1(3e4KJ) = X{MOD(IVIIe3:3KJ) MM, 1)%(=1)8#]CO(34KJ,1)
X2(3sKJ) = X(MOD(IVIIe3sKJI) sMM) 28 (=1)281CO(34KJIyI)
X104sKJ) = XIMOD IVt oKJI)sMM) 41 1 # (=1 )%R[CO(4eKJoI)
X2049KJ) = X(MOD(IV(Is4sKJ)sMM)2)%(=1)%##]CO(4sKJIy1)

ABOVE THE KTH TRIANGLE

CALCULATE THE CENTROIDS

55

56

421

700

800

300
302
301
306

305

304

IC1 = XJ

DO 55 [C3=21.4
CENT(15IC1s1)
CENT(2+1C1s1)
CENT(3,1C1,1)
DO 56 IC4 = 1.3

CENT(IC4+IC1sl) = CENTUICLICLsI) /7 4o
CONTINUE

CENT(1sIC1s1) + X1(IC3,IC1)
CENT(2+IC1ol) + X2(IC351C1)
CENT(3,IC1s1) + X3(IC3,1C1)

CALL GETKMX{KJo1}

DO 99 K = 142

DO 799 NZ = 1912

1SA]l = 1

M1 = MODI(NZs4)

IF(M1.EQe0) GO TO 700

1E4 = O

GO TO 800

Ml = &

JIE4 = ]

M2 = 1 + (NZ - IEG4) / 4
IF(ICO(M1oKIs1)eEQel) GO TO 799
IPL = 3#(IV(IsMl oK)+ (K=1)#MM=])+M?2
IF{IPLeLEs11) GO TO 300

IPL = IPL-10%#(1PL/96+1)

CONTINUE

IF(3%LIVITIaM]L o KJ)+{K=1)#MM=])+M2=-MSK(IPL))301+302+303
IF(IPLeGTe160) GO TO 799

111 = 1PL

GO TO 327

IF(1PLeLTe3) GO TO 799

IMR = JPL - 1
IF(3%(IVIIeM19KJI+(K=1)#MM=]1)+M2~-MSK(IMR)) 304+305+799
IF{IMR.GT«160) GO TO 799

111 = IMR

GO 710 2327

IMR = IMR - 1

GO TO 306

80
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303
307
310
327
391

392
395

396

350

349
353
354
352

351
358
364

376
517

519

375
374
518

320
82
81

199
99
98

169

IMR = [PL + 1

TF(AR(IVIIoMIoKJ)+(K~1)#MM=]1)+M2~MSK(IMR)) T799+305+310

IMR = [MR+1

GO YO 307

IF(IIleLTeBl1) GO TO 2391

GO TO 392

A21(111) = A21(1I1)+PP (IID)

GO TO 395

K21(I11- 80) = K21(1]1- 80) «+ PP(II])

DO 81 KA = 1,3

DO B2 KB = 144

IPL = 3%(IV(IesKBsKJ) + (K=1)%MM=])+KA

IF(IPLoLE.11) GO TO 396

IPL = IPL-10%(IPL/96+1)

CONTINUE

IF(AN(IV(IsKBoIKJI)+(K~]1)#MM=])+KA=MSK(IPL)) 349+350,351

112 = IPL

ISA2 = [SAl

IF(KAeLTe3) ISA2 = [SA1#(1-2#ICO(KBsKJIs]))

QX 4X 487

IF(KAeLTe3) [ISA2 = ISAI#(1-2#]CO(KB«KJs1))

GO TO 376

IF(IPL+EQel) GO TO 374

IF(IPL.EQs2) GO TO 82

IMR = [PL ~ 1

IF(38(IV(IsKkBoKJI)+(K=]1)2MM=]1)+KA=MSK(IMR)) 354,352,375

IMR = IMR - 1

GO TO 353

112 = IMR

ISA2 = [SAl

IF(KA«LTe3) [1SA2 = [SA1#(1-2#]CO(KBsKJs1))

GC TO 1376

IMR = [PL + 1

TF(38(IVIIsKBoKJ)+(K=1)#MM=1)4K s=MSK(IMR)) 3754352,364

IMR = JMR. + 1 :

GO TO 358

IF(II1eLT«81) GO TO 517

GO TO 519

AS221111o112) = AS22(II1s112) + KMX(NZs4#(KA-]1)+KB)®*]ISA2

GO TO 82

KS22(111~ 80s112 o1) = KS22(1I11~- 80,112 1) +
KMX(NZ 4% (KA=1)+KB)#]SA2

GO TO 82

MLD = MODI(3#(IV(]sKBoKJ)=1)+KA 38MM)

IF(MLDeGTe19:0ReMLDEQe2) GO TO 82

IF(IlleLTe8l) GO TO 518

GO TO 520

A21(111) = A21(TI11)-KMX(NZs4®(KA-1)+KB)*DO

GO TO 82

K21(111-80) = K21(I11=80) - KMX({NZ 4%*(KA-1)+KB)*DO

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

RETURN

END
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SUBROUTINE CHL3D
COMMON/1/ MSK(1000)s KS22(80+240+3)+1V(55+493)9X1(%93)9X2(493)

1 X3{493). K21(82) +KMX(12+12)+CDALT203+55)

2 INy» MMy IPs IPLs A21(82) » X13292) s 1CO(443+55)
1 X3(4y93) K21(82) sKMX(12512)9sCDA(T2+3455)

2 IN» MMy IPs IPL» A21(82) o X(3242) » 1CO(4»3+55)
3 5 CENT(393+55) [v24

DIMENSION JRC(32)
DIMENSION K9(80+160)
EQUIVALENCE (S5S+K9)
DIMENSION AS22(804240)
EQUIVALENCE (S(19201 )sAS22)
DIMENSION DELX(803+9) » GSAV(80,9)
EQUIVALENCE (AS22 +2)
DIMENSION 2(12800)
DIMENSION S(80+80+5)
DIMENSION AS(80+80)
EQUIVALENCE (KS22{19201)+5)
THIS ROUTINE SOLVES SU=G » WHERE S IS A TRI-DIAGONAL MATRIX IN
SUBMATRICESy WITH ELEMENTS OF ORDER Ne
S IS KNOWN
SP 1S A VECTOR OF DIMENSION (NXM) WHERE M IS THE NUMBER OF DIVISIONS OF §
C IS WRITTEN ONTO TAPE AFTER DERIVATION ON THE FORWARD PASS,
SP IS A VECTOR OF DIMENSION (NXM) WHERE M IS THE NUMBER OF DIVISIONS OF §
C IS WRITTEN ONTO TAPE AFTER DERIVATION ON THE FORWARD PASS,
AND READ BACK IN ON THE BACKSWEEP
S(lels?) INITIALLY CONTAINS S(14I-1)
S{le1e2) INITIALLY CONTAINS S(lIs1 )
S(islet? INITIALLY CONTAINS Si(lyI+l)
P CORRESPONDS TO P IN THE WRITEUP BY GATEWOOD ON THE FORWARD PASS.
ON THT BACKSWEEPs IT CORRESPONDS TO Us
ci ' SION SP(80s 9)
DI SION C(6400)
EQL. ".ENCE (S(25601)sQC)
EQU... LENCE ( AS22(128BCl)sSP)
DIMENSION Q(12800)
EQUIVALENCE (S:+Q)
REAL KS22+K21
REAL K9
DIMENSION G(82)
DIMENSION ND(80)
DIMENSION SQ(80»9)
DATA (ND(I)oel=1+80) 7/ 39 29 39 29 39 29 39 29 39 29 39 35 1y 3,
1 19 2% 39 19 29 30 19 29 35 190 29 39 1s 29 39 1y 35 1y 3y 1>
2 29 39 19 29 3% 19 29 39 19 25 39 19 2% 39 19 39 1y 39 1y 29 3,
3 1y 2y 39 19 29 39 19 29 39 19 29 39 1y 39 1y 35 1y 29 34 1
4 29 39 19 29 3/
DATA (JRC(I)oI=1432) /7 19 39 59 79 99 11y 129 14y 17s 20 23>
1 269 299 319 334 369 399 424 459 48y 509 529 559 584 61 64y
2 6Ty 699 Tle T4y 77y 80 /
XLIMIT = l.E-8
REWIND 1
REWIND 2
N = 80
N2 = 160
KREM = 80
KREM2 = 16V
M =9
DO 30 ICYCLE =1M
IF(ICYCLE«GT«1l) GO TO 12
WRITE(2) (Z(])e1=1,12800)
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DO 11 I=1,80
G(]) = A21(])
GSAV(I+ICYCLE) = G(])
DO 11 J=1,80
S(1eJde2) = AS22([yJ)
11 S(ledet) = AS22(1,J+80)
GO T0 17
12 IF(ICYCLEsEQeM) GO TO 14
DO 13 I=1,80
G(1) = K21(I)
GSAV(ILICYCLE) = G(1I)
DO 13 J=1,80
S(IsJrl) = KS22(1sJ»1)
S(I9J92) = KS22(14J+48041)
13 S(IeJds4s) = KS22(14J+160,41)
GO TO 17
14 INEW = 0
JJURC = 1
DO 480 J=1,80
G(J) = K21(J)
GSAVI(JsICYCLE) = G(J)
IF (JRCIJJIRCIeLTed) JURC = JURC + 1
IF(J=JRCIJIRC)) 46044654460
460 INEW = INEW + 1
MSK { INEW+T720) = MSK{J+720)
MSK ( INEW+800) = MSK(J+800)
465 DO 480 I=1+80
S({IsJel) = KS22(1eJs1)
IF{J=JRCIJJIRC)) 47044754470
470 S(IeJe2) = KS22(19J+8091) + KS22(14J+160+1)
GO TO 480
475 S(1ede2) = KS22(14+J+80s1)
480 CONTINUE
WRITE (2) (Q(I)sI=1,12800)
DO 490 J=1,48
MSK (J+768) = MSK(J+800)
490 CONTINUE
17 CONTINUE
1 K1 = N
K2 = N
K3 = N2
K& = N
4 CONTINUE
IF(ICYCLESEQel) GO TO 10
CALL MXMULT(S(1s191) » S(19295) » S{lsle3) sK1sK24K1)

C

C S(1s1s5) CONTAINS C FROM LAST CYCLE :

C 2

CALL MXSUB(S(1s192) » S(ls1e3) o Stlels2) sK1sK1) 3

: 10 CONTINUE i

C 1
i C B(IsI) NOW IN S{ls142) 1

C 3
i CALL INVERT(S(1s1+2) s K1 » K3y XLIMIT , FLAG) ¥
§ IF (FLAG.NE.Oe) GO TO 500 [ §
: c
E C INVERSE OF BllsI) NOW IN S(1s1s2)

c .

IF (ICYCLE«EQel) GO TO 20

CALL MXMULT(S(1lslel) +SP{1sICYCLE=1) 4 S{1sls3) osKly K2 » 1)
4 CALL MXSUB (G s S(1s1s3)s GeKly 1)

20 CONTINUE
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CALL MXMULT(S(19s142) 9 G 9SP(1y ICYCLE ) o R} o K1 » 1)
IF (ICYCLE«GE«M) GO TO 135
CALL MXMULT (S(1s1s2) » SU1elea) » S(1sl1e5)s K1l » K1 o+K&)
NSQ = N#K4
WRITE (1) (ClJ)eJ=14NSQ)

30 CONTINUE

35 CONTINUE

NOW IN BACKSWEEPs SOLVING FOR U

laNa¥al

DO 60 I = 24M
JCYCLE = M=1+1
JFCJCYCLE«LTeM=-1) GO TO 36
K1l = KREM
o0 GO 10 37

36 K1 = N

37 CONTINUE
NSQ = K1#N
IF(JCYCLE.EQeM~1) GO TO 41
BACKSPACE 1

41 CONTINUE
BACKSPACE 1
READ (1) (CtJ)eJ=]1sNSQ)

U(M) aSP(M) o+ CONSIDER FIRST (M=-1)TH CYCLE

[aXaNa!

CALL MXMULT(S(191¢5) »SPU1sJCYCLE+1)9sS(1slsl)eNsKly 1)
CALL MXSUB(SP(1+sJCYCLE)s S(1lslsl) »SP{1sJCYCLE)s N » 1)
60 CONTINUE

UINSs1) NOW STORED IN SP(Nsl) » I=1sM

NN

REWIND 2
DO 400 IC = 1,9
i IF{1C-2) 300+320+320
300 READ (2) (Q(1)+s1=1,12800)
CALL MXMULT(SsSP(1+]1)+DELX(1+1)9805160s1)
G0 TO 400
320 IF(ICeEQeM) GO TO 350
310 DO 315 I=1,80
DO 315 J=1+240
315 KS22(19J42) = KS22(10Jdsl)}
CALL MXMULT(SeSP(14IC=1)+DELX{1+]C)980+240+1)
£ GO TO 400
350 READ (2) (Q(I)e1=1,12800)
CALL MXMULT(QoSP(1+8)+DELX(1+1C)»80+160,1)
400 CONTINUE

i PRINT 4001
4001 FORMAT(1H195Xs3HROWs11Xs4HDELX »12X s 3HK21)
i DO 450 I=1,9

DO 450 J=1+80
K = 80#(]-1)+J
IF(MOD(Ks50)eEQeO) PRINT 4001
450 PRINT 4000sKeDELX(Js")9GSAVII,yI)
4000 FORMAT(6X91392(2X9sE1346))
RETURN
500 CONTINUE
PRINT 1000 s ICYCLE
1000 FORMAT (31H1COULD NOT INVERT MATRIX IN ROWsI[2}
sTop
END

i
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SUBROUTINE SIGMAS
COMMON/1/ MSK(1000) s KS22(80+24093)9IVInSs49e3)9X1(403)eX2(4s3),

1 X3(4s3) K21(82) oKMX(12912)eCDA(T2+3485)
COMMON/17 MSK(1000)s KS22(80+240+3)sIVISSe4e3) s X1 (4s3)sX2(4s3)»
1 X3(&s3) K21(82) +KMX(12912)9CDA(T2+3+5%)

2 INs MMy 1Py IPL» A21(82) o X(32+2) » ICO(443+55)

3 o CENT(3+3455) 0z

EQUIVALENCE (KS22+STRS)

DIMENSION AS22(80+240)

EQUIVALENCE (AS22(12801)+DEL}

EQUIVALENCE (5019201 )+AS22)

COMMON /INPUT/ XNU(2)s E12) +XLAM(2) 5 G(2) » CMX(64+692) o DO
DIMENSION S(80+80+5)

EQUIVALENCE (KS22(19201)1+S)

DIMENSION STRS(6+1500) » DX(12) » DEL(1000)

C

C

C

C  PRINT JUT LISPLACEMENTSe 6 PAGES

C
PRINT 1000

1000 FORMAT(1H]1 950X s13HDISPLACEMENTSy//)

JOCNT = 0

DO 15 Jslsl02
JONT = JCNT + 1
IF(JCNT.LE.18) GO TO 14
PRINT 1000
JCNT = 0
14 JFIR = 7#(JU-1)+1
JLAST = JFIR + 6
PRINT 1001» (KsKmJFIRsJLAST)
1001 FORMAT(1H o+7(BXs4HDEL(+I3s1H)))
PRINT 1002y (DEL(K)+KSJFIRoJLAST}
1002 FORMAT(1H »7(2XsEl4e7)/)
15 CONTINUE
PRINT 1001y (KsK=715+720)
PRINT 1002s (DEL(K)sK=715,720)

1123 = 0

00 406 [1=1,9

DO 406 12=1+IN
DO 406 13m1,43

1123 = [123+]

11 COUNTS FLOORS 3
12 COUNTS BASE TRIANGLES .
13 COUNTS TETRAHEDRONS ABOVE BASE { .
1123 COUNTS ALL OF THEM

[aNa¥a¥alalal

KZ = 0
DO 405 KJ = 1,3 t
DO 405 KK = 144 90
KZ = KZ+1
ISA = |
IPL = SH(IVII2+KKo13)+(11=1)#MM~1)+KJ i~
IF(IPL.GTeB64) GO TO 305 J
GO TO 306

305 IF(KJeEQe3) GO TO 307
IPLsIPL-96
GO TO 306

307 DX{(KZ)=0.
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306

300

418
410

“c9
412
419
415

bla

416

411
617
421

425
408

406

GO TO 405

IPM=]PL

IF(IPLeLE«sl) GO TO 300

IPL = [PL=-10%(IPL/ 96+1)

CONTINUE

IFCIPM=MSK(IPL)) 409,4185411
IF(KJelLTe3) ISA = 1-2#]CO(KKosI3412)
OX(KZ) = DELI(IPL) * IS5A

GO TO 405

IF(IPLeEQel) GO TO 416

IF(IPLeEQe2) GO TO 425

IMR = [PL-1

IF(IPM=MSKI{IMR)) 4144+419,416
IF(KJeLTe3) ISA = 1-2#]CO(KKsI3412)
OX(KZ) = DEL(IMR) # [SA

GO TO 405

IMR = [MR-1

GO TO 412

OX{KZ) = DO

MLD = MOD(3#(IV(I2sKKsI3)=1)4KJIpI#MM)
IFIMLDeGTe190ReMLD¢EQe2) DX(KZ) = O,
GO TO 40%

IMR = [IPL -1

IFCIPM=MSK.{IMR)) 416+415+421

IMR = [MR+1

GO TO 417

DX(KZ) = Qe

CONTINUVE

CALL MXMULT(CDA(1+13412)+DX9sSTRS(1+1123)46+1241)

CONTINUE

STRS NOW CONTAINS THE SIX STRESS COMPONENTS
PRINT OUT CENTROIDSs 710 PAGES

500

50
1020

JONT = 1

PRINT 1027

112 = O

DO S50 I1 = 1,9

D20 = DzZ#(I1-1)

DO 50 12 = 1y IN

DO 500 3= 1,3

CENT(3513412) = CENT(3413+12) + DZD

CONTINUE

112 = 112 + 1

1123 = 3#(]12-1) + 1

1123P2 = 1123+2

1123M]1 = [123-1

PRINT 1020

PRINT 102190 (i)sSTRS(19J))sJ=[1239]123P2)

PRINT 1022+((12+STRS(2+J))9J=1123,+1123P2)

PRINT 1023 ((JrsSTRS(39J+1123M1)) sJ=143)

PRINT 10249 (( CENT{19J912)9STRS(4e1123M14U))eJ=1,3)
PRINT 1025¢(( CENT(2¢Js12)+STRS{5s1123M14J))4J=1,3)
PRINT 1025+(( CENT(3+J9]2)9STRS(691123M14J))sJU=1,43)
PRINT 1026

JONT = JCNT+1

1F{JCNTeLT7) GO TO S0

PRINT 1027

JONT = 0

CONTINUE

FORMAT(1H #3(20X913HSTRESS VECTORs6X) )

86



1021 FORMAT(IH »3(5HLAYEP+9XsI3+3X+E13e646X))
1022 FORMAT(1H »3(BHTRIANGLE+6X91393XeEL13e696X))
1023 FORMAT(1H #3(11HTETRAHEDRON+3XeI1393XsE136696X))
1024 FORMAT(1H #3(8HCENTROIDs2XsFT7e493XsEL1306+6X))
1025 FORMAT(1H 93 (10XsFTabs3X9E136696X))}
1026 FORMAT(1H )
1027 FORMAT(1HK1)

RETURN

END

¥

Y o

Y ST
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SUBROUTINE INVERT(BsKsK2»XMINsFLAG)

THIS SUBROUTINE SETS UP A UNIT MATRIX ADJACENT TO B(K»sK}

ELEMENTARY ROW OPERATIONS ARE THEN PERFORMED ON THE NEW K X 2K MATRIX
TO REDUCE B(KsK} TO A UNIT MATRIXe THIS WILL PLACE THE INVERSE OF
ELEMENTARY ROW OPERATIONS ARE THEN PERFORMED ON THE NEW K X 2K MATRIX
TO REDUCE BI(Ks¥K) TO A UNIT MATRIX. THIS WILL PLACE THE INVERSE OF
THE MATRIX B(KsK) IN THE RIGHT HALF OF B(K2K)

ON EXITs THE INVERSE OF B R:PLACES B

B IS AN ARRAY OF 2#K##2 LOCATIONS CONTAINING THE MATRIX

K 15 THE DIMENSION OF THE SQUARE MATRIX B

K2 IS 2%K

XMIN 1S THE SMALLEST ALLOWABLE MAGNITUDE OF THE PIVOT

FLAG WILL BE RETURNED AS O. IF THE INVERSION WENT OFF OK

FLAG WILL BE RETURNED AS 1lUe IF A PIVOT ELEMENT WAS TOO SMALL

FLAG SHOULD BE TESTED AFTER EACH CALL TO THIS ROUTINE

DIMENSION B(KsK2)
FLAG = 0.
SET UP UNIT MATRIX

DO 1 [I=1sK

DO 1 J=1.K

B(IsK+J) = Oe

IF(1eEQed) BllsK+J) = 1.
1 CONTINUE

FIND LEADING ELEMENT WITH GREATEST MAGNITUDE

DO 6 J=14K

M= J

N = U+l

IF(NeGTeK) GO TO 21

DO 2 L=Ns«K

IF (ABS{B(MsJ))elLT.ABS(B(LsJ))) M=L
2 CONTINUE
21 CONTINUE

IF (ABS(B(MyJ))eLTeXMIN) GO TO 10

INTERCHANGE JTH AND MTH ROWS

00 3 L=JsK2
D = B8(JslL)}
BtJesl) = BiMsL)
B(MsL) =D

3 CONTINUE

ZERC OUT PIVOTAL JTH COLUMNs SKIPPING PIVOTAL JTH ELEMENT
DIVIDE JTH ROW BY PIVOT

DO & M=Ny»K2

BlJsM) = BlJUsM) /7 BlJsJ)
4 CONTINUE

DO 6 M=1,yK

M DETERMINES ROW BEING MODIFIEDs ONE WHOLE ROW AT A TIME

IF ( MeEQeJ ) GO TO 6
DO 5 L=NsK2
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L DETERMINES ELEMENT IN THE MTH ROW

B(MsL) = Bi{MsL) = B(MsJ) # B(JyL)
5 CONTINUE
6 CONTINUE

INVERSE OF B 1S NOW IN RIGHT HALF OF B(KsK2)
NOW MOVE B INVERSE TO WHERE B WAS
DO 7 1I=14K
DO 7 J=14K
B(lsd) = B(IsJ+K)
7 CONTINUE
RET!JRN
10 FLAG = 10.
RETURN
END
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SUBROUTINE MXMUL1(AsBsCsMaNsKsMIsN1sL1)

THIS SUBROUTINE MULTIPLIES MATRIX A BY MATRIX B AND STORES THE
PRODUCT IN Ce (C CANNOT BE THE SAME AS A OR B}

A IS (M X N)

B IS (N X K)

C IS (M X K)

M1l IS NUMBER OF ROWS IN ARRAY A IN CALLING PROGRAM, M1 «GE M
Nl IS NUMBER OF ROWS IN ARRAY B IN CALLING PROGRAMs N1<GEeN
L1 IS NUMBER OF ROWS IN ARRAY C IN CALLING PROGRAMs L1+GE«M

DIMENSION A(M1sN) o B{(N1sK) » ClL1 oK)
DO 1 I=l.M
DO 1 L=1sK
C{lsL) = Oe
DO 1 J=x=lsN
ClIeL) = ClIsL) + A(lsJd) * B(JslL)
1 CONTINUE
RETURN
END
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SUBROUT INE MXCON(A+BsXeMsN)

C
C THIS SUBROUTINE MULTIPLIES MATRIX A (MXN) BY CONSTANT X, RESULT IN B
C A MAY BE SAME AS B.
C THIS SUBROUTINE MULTIPLIES MATRIX A (MXN) BY CONSTANT Xs RESULT IN B
C A MAY Bt SAME AS Be.

DIMENSION A(MsN) » B(MyN)

00 1 I=14M

DO 1 J=1sN

BlIeJ)m X®A(IsJ)

1 CONTINUE
RETURN
END

e
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SUBROUTINE MXMULT(AsBeCoMsNK)

THIS SUBROUTINE MULTIPLIES MATRIX A BY MATRIX B AND STORES THE
PRODUCT IN Co (C CANNOT BE THE SAME AS A OR B8.)

aNaNaNaNaNaNalal

(g}

A IS (M X N)
B IS (N X K)
C IS (M X K)

DIMENSION

DO 1
DO 1
CtIsL)
DO 1

[=1M
L=lsK
= O,
J=1sN

A{MIN)

s BUINK)

+ CIMsK)

ClIsL) = CUIsL) + A(I9J) ®* B(JsL)

1 CONTINUE
RETURN
END
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SUBROUTINE MXSUB(AsBsCsMsN)

C
C THIS SUBROUTINE SUBTRACTS MATRIX B FROM MATRIX AsSTORES RESULT IN C
C
C THIS SUBROUTINE SUBTRACTS MATRIX B FROM MATRIX AsSTORES RESULT IN C
¢ .
C THIS SUBROUTINE SUBTRACTS MATRIX B FROM MATRIX AsSTORES RESULT IN C
C
C A» Bs AND C ARE (M X N) (C CAN BE THE SAME AS A OR B)
C

DIMENSION A(MIN) » BIMsN) +CI(MeN)
C

DO 1 I=1eM

DO 1 J=1lsN

Cl(led) = Alloed) ~ BlleJ)

1 CONTINUE
RETURN
END

1056 CARDS

.
. 1™
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'COMPUTER PROGRAM FOR POINT-MATCHING METHOD

SRF4 SNEFF
31/ 5T$P/ 59TSC/200ES
SFTNsLsPo

PROGRAM PMATCH

THIS PROGRAM READS THE INPUTS AND SERVES AS A DRIVER FOR THE_ SUBROUTINES
SOLVING THE TWO-DIMENSIONAL STRESS PROBLEM OF A FIBER-REINFORCED SAMPLE
USING THE POINT MATCHING METHODe THE EQUATION SOLVED IS GX = Y » WHERE

G IS (NEQ X NUNK)s X IS (NUNK X 1)s AND Y IS (NUNK X 17

SHOULD M ANG/OR MPR BE CHANGEDs DIMENSIONS OF COEF SHOULD BE RE-ESTABLISHFD,
AS WELL AS DIMENSIUNS OF G AND GNs AND NEQsNXsAND NUNK —
COMMON /1/ G(148557) » GN(56557) » E(2) » NU(2)
1 ATNs BINs CIN, VF T . o
DIMINSION ERR(148) » Y(56) » GNSAVI(56+57)
TYPE REAL NU B

COMMON_/SIZES/ NEGs Ms MPRs NXs NUNK s NUNKP1
CIMENSTON COMENT(I0) T

DATA(P1=31415927) » (NEQ=148) » (M=7) » (MPR=7) , (NX=37)
DATATELMIN=1.E=8) 5 (NUNK=56)s (NUNKP1=57) T T T e

JDUM = INIT(1,1)

(al aNalla¥alla¥a)

C
C INIT IS CALLED -HERE TO INITIALIZE BINOMIAL COEFFICIENTS TO ZERO
C

KASENO =1
READ 1000 (COMENT(I)s1=1+10)
___1o00 FonvAT(laAa
TTTTTR S'IUOTKETTWo E(2Ys NU(1)s NU(2)s VF, BIN T T e
1001 FORMAT(6FE10e4)
IF(BINeEQeDe) GO TO 2
PRINT 2002 s KASENO

2002 FORMAT(13H1 CASE NUMBER»12)
BRYRYC 500545 8 ERt (1) 1210100 T
—2000 FORMAT(1X10A8)

CIN=SQR (3-)/2-*BIN T e e e -

AIN= SQRT(4e* CIN*BIN®VF/PI) B
PRINT 2001y E(1)s E(2)s NU(L), NU(2)s VFs AINs BINs CIN
2001 FORMAT (7x 2HET 912X s3HET I911X94HNUI 410X s4rANUI I}lngZﬂYfg_]!_BﬂXﬂ:ﬁl)ji:

1 13X IHBs 13X 1HC /1Xs8(2XE1265) )

-C
C NEQ - NUMBER OF EQUATICNS IN OVER-DEFINED SYSTEM
C_ M - SUMMATION LIMiT, REGION 11
C MPR - SUMMATION LIMIT, REGION I
C___NX_ = TOTAL NUMBER OF UNKNOWNS s REGIGN 1
C NUNK = NUMPER AF UNKNOWNMS RFGION 1 PLUS REGION II.

C__NUNKP1 - NUMBER OF UNKNOYNS PLUS 1

C ELMIN = MINIMUM ALLOWABLE MAGNITUDE FOR A PIVOTAL ELEMENT

C - . ] . T 2.2 e s e
C

C__SET UP THE MATRIX G(NEQXNUNK)s THE COEFFICIENT MATRIX
C IN THE OVER-DEFINED SYSTEM GX = Y » AND ALSO SET UP Y, THE INDEPENDENT ~~
C__VECTOR

CALL GETG

C
C NOA HAVE KNOWN MATRIX G AND INDEPENDENT VECTOR Ye GET PRODUCT "GN =~

__C__(G=TRANSPOSE) * Ge GN IS(NUNK X NUNK) o
C

CALL MXTMUL (G»GsGNyNEQsNUNK s NUNKP1 )

C
C__NOW HAVE LEAST-SQUARES COEFFICIENTS IN GN (NUNK X NUNKP1)

c
C__SAVE GN_FOR BACK SURSTITUTION




1 c
____________ DO_9109 I=1,NUNK
DO 9177 J=1,NUNKP1
9100 GNSAV(IsJ) = GN(IsJ) i B B LI e
c

_CALL _FGNSLV(GNsNUNK sNUNKP1sFLAGFLMIN)

IF (FLAGeNFe0s) GO TO 10C

Loce
C 'NOw NUNKP1 TH COLUMN CF GN CONTAINS UNKNOWN VECTOR

C e, L. "o 0 ] B B
C CALCULATE ERRORS IN PRIMITIVE SYSTEM AND PRINT THEM
C | A SR 1 Bt - O
PRINT 6070
6770 FORMAT( 1H1+20GXs26HERRORS IN PRIMITIVE SYSTEM///)
N0 150 1=1,148
CALL VECMUL(G3sGN(1sNUNKP1)sERR(T) sNEQsNUNK I
150 FRR(T) = G(IsNUNKP1) - FRR(I)
______ DO 200 1 = 1,21
IFIR =7%(1-1)+1
ILAST=6 + IFIR
TIF(leEQe15) PRINT 6070
PRINT 6072s(JsJ=IFIRsILAST)
200 PRINT 60719 (ERR(J)sJ=IFIRSILAST)
PRINT 6072 4 148
TTTTTTTTTTTTBRINT 6071, ERR(YIA8Y T 7
6771 FORMAT(1H »7(3XE1346)/ )
TTTTTBOY 2  FORMAT (IR 57 TIOXSZHXTSIZ 1A )~y — -

C
T C CALCULCATE AND PRTINT ERRORS IN SQGUARED SYSTEM
TTTTTTTTTTTTBRINT e0RN T T T R A -
3 6080 FORMAT(1H1920GX24HERRORS IN SOUARED _SYSTEM///7)
DO 180 T=1+56 .
CALL VEC“UL(GNSAV. GN(IgNUNKPl)oERR(I)’NUNKoNUNKQI)
NKPT) =ERRTID

DO 190 1=1.8

& IFIR = T#(1-1)+1

3 ILAST = [FIR+6

- T PRINT 6072s(JsJ=IFIRSILAST)
190 PRINT 6071s(ERR(J)9J= IFIRSILAST)

SUBSTITUTE UNKNOWNS INTO EQUATIONS FOR STRESSES AND DISPLACEMENTS.

CALL BACKSB
"TALL STRESSES AND DISPLACEMENTS ARE KNOWNS ~GET MODULUS E€EC 7 EIT

i
Tal [alal

aNa!

GO 10 2
100 PRINT 2005, FLMIN ACLER TN
2005 FORMAT(56HIA LARGEST PIVOTAL ELEMENT WAS SMALLER TN MAGNITUDE THAN

1 sElles)
2 CONTINUE
STOP
END ) - ey
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SUBROUTINE GETG

COMMON_ 71/ GU(14Bs57) » GNI(56457) » £(2) » NUL2) »
1 ATN, BINy CINy VF

TYPE REAL NU oy

COMMON /STZES/ NEQs Ms MPRs NXs NUNK + NUNKPI

[alaXalal

TYPE

REAL _KAY

DATA

(P1=3.1415927)

KAY ==E(1)/(1.+#NU(1))

C ZERS OUT AUGMENTFD MATRIX

DO 1

[=1.NEQ

D0 1

J=1yNUNKP1

G(ch)*ﬂ.

THIS SUBROUTINE GENERATES THE COEFFICIENT MATRIX (G MATRTX)
OF__THE _KNOWN OVERDEFINED SYSTEM

1 CONTI

NUF

C EQUATINNS 30 T0 35

XX=C1
YY=B81

N—-AIN
N/2e

CACL
CALL

TGN (T lsXXsYYsle)
SIOGL(1e29XXsYYs=10)

CALL
CALL

TAUXY (291 eXXeYYsle)
TAUXY(392eXXsYYsle)

CALL
CALL

AT AT T
U(NQZ'XXOYYo-l-)___

CALL
CALL

V(f)onXXOYYolo)

C FQUATION 136

DO 10U J=1-14
CPJI=COS(PI*J/3U-)

SPJ=SIN(PT*,73504)
SPJ2=

SIN(PI#J/154)

XX=ClI
YY=B81]

N=-ATIN#CP)
N/2e=AlIN%SPJ

CALL
CALL

STOX(J+6s 19 XXsYYsCPURSD)
SIGX(J+6929 XX YYs=CPIRRD)

CALL
CALL

STGY(J+6s1sXXsYY SPI%R?)
SIGY(J+6923 XX YY s=SP %42

CALL
CALL

TAUXY (J+6s] 9+ XXsYY$sSPU2)
TAUXY(J+6929XXsYYs=SPJ2)

C EQUATION
cpy2=

3z T
COS(PI*J/15)

SpPJ2=
CALL

S5PJ2/2.
SIGY(J+2Us1 e XV YYSPJ2)

CALL
CALL

SIGY(J+20+29XXsYYs=5PJ2)
SICX{J+20,]1 +XXsYY»=-5PJ2)

CALL
CALL

STOX{J+20 42 XX YY s SPU2)
TAUXY(J+20914XXsYYCPU2)

CALL

TAOXY (J4203 29 XX s YY y=CPJ2)

EQUATION

[aNallal

38

CALL
CALL

UTIF34 Ty XX YYSCPU)
U(J"?‘Oo?vXXvVYo'CPJ)

CALL
CALL

VIJ+34419XXaYYsSPY)
V(J"ﬂ“OZ’XXOYY'-Spﬂ‘ A

EQUATION

39

[aHaNal

CALL UGJ+4By19XX2YY2SPY)

96




CALL U(J44B+2+XXsYY =SPJ)}

CALL VIJ#48y2eXXsYYs=CPUY

CALL VI(J+4R42,XX4YYsCPJ)
10 CONTINUE

C
C__EQUATINONS 63 10 68

C

XX=C[IN
YY=BIN/2.-AIN
CALL SIGY(63919XX9YYsle) » .
CALL STGY(62s23XXe¥YYs=1,) 2
CALL TAUXY(6isloXXo¥Yels) . - 3
CALL TAUXY(65+2¢XXsYYs1,) '
CALL U(6601oXX1!VoloL
CALL U(6Te2+XX9YYsle)
CALL V|68'10XXOYY‘1-)
CALL V(6Bs2eXX9YYos-10)
GI66sNUNKP1) = KAY

GCU67T+NUNKPT) = KAY

""""""""""" FRUATIONS 26 ARD &1~ 77 °

DO 20 J=1,9

XX=CIN=-AIN+J#AIN/10.

YY=BTN/2, TSR Al RS
CALL TAUXY(J+6B8s19XXsYYs1le)

(YN SETZNES & 60 KD £ A 7 K3 H

20 CONTINUE
C EQUATIONS 48 10 50

XX=CIN
YY=sBIN/2.
CALL TAUXY(BTsleXX9YYsle
"4 CALL UTBB eI+ XX9YYsle)
CALL VI(B9eslsXXsYYsle)
G(B88yNUNKP]1) = KAY
EQUATIONS 51 AND 52

1
B R S .

DO 25 J=1,9 1
YY=BIN/2.-J#{AIN/]10s)

CALL TAUXY(JU+BO9ylsXXeYYsle)
CALL UlJ+98,19XXsYYs104)

oLt e o
-~

~CTIVIES Ll 4.\ A
25 CONTINUE .
EQUATIONS 53 AND 5%

DO 30 J=1s4

YY=BIN/2e=-AIN=J# (BIN-AIN)/5,

CACL TAUXYUJ#IDT 2 XX sYYe 1) T

CALL U(J+111929XXsYYsle)

GIJ+ITI+NURKPIT = KAY
30 CONTINUE

i
la

RO .

EQUATIONS 55 T0 57

[a TaNa

YY=s=BIN/2e

CALL TAUXY(116+2+XXsYYsls)
CALL U(117929XXsYYs1le)
G(I17,NUNKPYI)Y = KAY —~ ~ 7 7~ T
CALL V(11892+XXsYYs1le)

97

LR



EQUATIONS 58 AND 59

alla¥a

DO 40 I=1,s12

XX s(l1-1) #{CIN/12.)
YY==BIN/2,

CALLU TAUXY(T1+118425XXsYYsla)
CALL VI(I+130924XXeYYs10)

40 CONTINUE

a¥al

EQUATIONS 60 AND 61

DO 45 1=z142
XX =(]=-1) #{CIN=AIN)/13,

YY=zBIN/2.
CALL TAUXY(I+142+429XXsYYsl0)

CALL VII+14542+XX9YYs1ls)
4% CONTINUE

RETURN T
END e 4 e mree S me el e e e —— i - -



SUBROUT INF BACKSH
_____________ COMMON /17 GU148s57) s ONIS6EsST) » E(2) » NU(2)
b AINs BINs CINy VF
TYPE REAL NU |
COMMON /SIZES/ NEQs Ms MPRy NXe NUNK o NUNKP]
_________________ DIMFNSION DFLPI(2) AYE(2) » SIGN(2U»2) » TAUN(2042)
DIMENSION  JI(11s11)
- . _DIMENSION XF{2usll) » YF{2Us1ll) » STRESS(20+1195)sPHI(20)

DIMENSION PHIDEG(2U)
TYPE REAL U1

TYPE REAL KAY

C
C Y = 8/2. » WALKING ALONG RO TO RIGHT.
c

21 PRINT 10C2J

V2PRINYYOTO
IPRNT = 0
73 CONTINUE
X1 = X1+DELX
YO = BIN/Z2<-DELY
DO 10 I=1,11
Y3 = Y0 ¥ DFLY
XF{IleJ) =
YF(]sJ) =
. TFCICIN=XF(ToJ) ) #%#2+(BIN/2e=YF(15J) )% %2, GT.AIN*%2)
3 1G0 TO 5
L =1
£ I
3 G0 TO 6
5 L = 2
JI(1sJ)
E 6 CONTINUE

AYE(])

AYE(2)

ZERO OUT MATRIX G AS REQUIRED

»
[a¥allaNallal

DO 7 121=1+5
3 DO 7 J21 = 1sNUNK
E 7 G(I215J21) = O

‘ CALL STGX(IsLsXFiT+JIsYF(TsJdisle)

: CALL SIGY(2sL s XFUIsJ)sYF(IsJ)ela)
¢ CALL TAUXY(3sL o XF(TeJ)eYF(IsJ)sls)

. CALL UlasLsXF(IsJ)sYF(IsJ)o=14/KAY)
CALL VISl XF Ty o YF(T3d) v=14/7KAY)

] D0 9 IM=1,5
: 9 CALL VECMUL(GsGN(1sNUNKP1)s STRESS(IsJsIM)s NEGNUNKsIM)
PRINT OUT GRID VARTABLES }

[aNa]
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TN

A T e, g ST PURLET

PP Y

B Al e

PRINT 1071y XFUT1aJ) » YE(IsJ) o (STRESS(I+JeKVsK=1567s JICTsd)
19 CONTINUE . PSR S m  wee

STRESS(IsJel) CONTAINS SIGMA X » I=1911 » J=lsll

ET CETERA . S S

g
C
C STRESS(IsJe2) CONTAINS SIGMA Y » I=1s11 » J=1s11
C
C

_.1700 FORMAT(1H1+13Xs1HXs13Xs 1HY s BX s6HSIGMAX +BXs6HSIGMAY 59X s SHTAUXY s 13Xs
1 1HUs 13X+ 1HV s 10X «6HREGION/ )
1001 _FORMAT(1H 2(3XsF1lat)s5(3XsE11eb)912XsA2 7} .
1070 FORMAT(/7//)

€ TNOW MOVE ALONG £DGE OF FIBERSFROM THE TOPs COUNTER-CLOCKWISE.

C

DELDH] = 6.-“_-u ) ComTTmmmEmm T
PHI1 = 0,

DO 27 T=1+14
_PHI1=PHI1+NELPH]

PHINDEG(I) = PHI1

PHI(I) = PHI1 /57429578
XF{Ts1)=CIN-AIN#COS(PHI(I))
YF(1+1)=BIN/2¢~AIN#SIN(PHI (1))
D0 29 J=1+2

¢ TZFRO OUT MATRIX G AS RFQUIRED

PO 78 121=1,5

o DO 28 J1 = 1sNUNK . e
TT28 6i1215J1)= .
e CALL SIGX(1y Js XF(Is1)sYFUIsl)sie i e
CALLUTSTGY (2 Js XFUIs1)aYF{Isl)sle )
e CALL TAUXY(39ds XF({Ts1)sYF({T o1l ) . ) Jemn  —
CALL UlGsJds XFUla1)sYFUlsl)s=-1a/KAY)
CALL V(Ssds XF(Ial)aYFUlsl)e=1le/KAY? -

DO 29 K=1+5
29 CALL VECMUL(GIGN(1sNUNKP1)s STRESS(TsKseJ)sNEQ NUNKeK }

L —— e e e
-
C __SIGMAX J__IN STRESS(Is1sJ) & J=142 o
C  SIGMAY J IN STRESS(1+25J) s J=1,2
C__TAUXY J IN STRESS(1434J) 5 J=142
C U T TTUTTISTRESS U Is6ed) s J=1s2 0 mmmmmmmmmmm
€V J 1N STRESSUIS6sJ) s =142 B e
C
c

DO 30 J=1+2
L SIGN(IsJ) = STRESS(I+1sJ)%#COSIPHI(T))*#*24STRESS(142+J)
1 * SIN(PHI (1) )%#24STRESS(1534J)%2,
* SIN(PHI(I))* COS(PHI(I))

?
TR T AUNCT 9 J) = (STRESS(I929J)-STRESS(Te1 s J)I#SIN(PHI(]})

1 * ZOS(PHI(I)) + STRESS(Is3sJ)
2 TTTTTE{COSIPHI (L)) w2 ~ SIN(PHI(T))%%2) T T T
__________ 33 CONTINGE ) e ———
C
€ NOW HAVE VALUES ON INTZIRFACFEPRINT THEM OQUT —
G
1706 FOIMAT(IHL) ) N S

PRINT 1037
1037 FORMAT(1H1,15Xs19HVALUES ON INTERFACE////)

D0Tan J=1,2
DO 44 I=1s16
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IF{1eFQel) PRINT 1010

1 sSTRESS(Is&4sd)s  STRESS(I95sJ)

(1
PRINT 10119 AYE(J)oPHIDEG(I)oXF{To]1)oYF(To1)sSIGN{IsJ)sTAUN(IsJ)

1010 FORMAT (8H REGION 5  8Xs3HPHI »13Xs1HX s 14X1HY s 11X THSIGMA N» 9Xs»

1 SHTAU NsL1Xs1HUs14Xs1RV/)
IF(1+EQsl4) PRINT 1012

1012 FORMAT(/7/7)

44 CONTINUE

1011 FORMAT(1H 4XsAZs4XsF10e295Xs6(3XsE12e5))

NOW FIND VALUE OF P

2%a1a¥als)

PaO.
P1=0.

DELP(1) = AIN / 20.
CELP(2) = (BIN-AINY / 20.

Y1l = BIN/2++DELP(])
DO 60 J=1,2

J=zls REGION I o J=24 REGION 11

al{a¥a)

DO 60 1 = 1,20

I STEPS ALONG LINE Xx=C

[a EaNa'

iF(1eEQeleaANDeJeEQe2) GO TO 60

TERGTOUY "MATRYX ™G AS "REQUIRED ~ 777

yI = Y1 - DELPTJ]

DO 50 " J21 =1»RURK T
50 G(1sJ21) = 0o

CALL STGXTI+sJeCTINsYIs1e)

CALL VECMUL ({GsGN(1+NUNKP1)sSXsNEQsNUNK 1)

INTEGRATE SX FOR Ps USING SIMPSONS RULEe

allaNa laRalfala]

YHE TNTYEGRAL TS SET EQUAL YO "ZERD ON THE FTRST PASS,
TRAPEZOIDAL INTEGRATION 1S USED ON THE SECOND PASS

WHEN J GOLS FROM ONE TO TwO, THE IN T
AGAIN SIMPSONsS RULE COMMENCFS OV [=3,

IF(1=2) 56952453
T2 P =PI DECPTITH(SX#RYN72. ~

3 = +
55 CONTINUE

6O _TO 55
PTITHTSXZT 4o¥SXI+ 5X) 735

C
C

SAVE PAST VALUES OF P,SX

C

P2 = P1

Pl = P
56 SX2 = SX1

SX1= SX
PRINT 9091+14PyP1l,yP2

PRINT 9092+ SX9SX145X2

FORMATTIH 1= T30 3HP =4E13.6+3HP1=9E 13469 IHPZ2LEY T 6]

60 CONTINUE

P = PRESENT VALUE OF TNTEGRAL ~
Pl - 1ST PAST VALUE OF P

FORMAT(4H SX=92E13e634HSX153E134604HSXZE9E1346)

T R i v
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SX_=- PRESENT VALUE OF SIGMAX

SX2 = 2ND PAST VALUE OF SIGMAX

P2 - 2ND PAST VALUE OF P = T

SX1 - 18T PAST VALUE OF SIGMAX

NOW HAVE Py PRINT IT

alakaNal aNallaNal

PRINT 102usP

1020 FORMAT(////4H P= 4E15.8)
RETURN
EAND




p—

"TSUBROUTINE VECMUL(A+BeColsdsK)

S S
C TTHIE SUBROUTINE MULTIPLIES THE KTH ROwW NF VMATRIX A TIMES
C THE COLUMN VECTOR STORED IN B AND STORES THE RESULT IN Ce
c
C__MATRIX A HAS I ROwS
C VATRIX A HAS J COLUMNS
L CIMENSION Al(IsJ) » Bt
C = Qe
DO 1 L=1sd ) | D I
1 C = _CH+A(KsLi*B(L) o e
RETURN
- - _an. - - - p— - )
TTTTTTTTTTUUTSUBROUTINE EONSLVI( B oK 9KP1ls FLAGSELMIN) [
N S R = ey ) o S e
C THIS SUBROUTINE DCES A GAUSSIAN ELIMINATION PROCEDURE ON THE
___C__AUGMENTED MATRIX B = AY o WHERE AX=Ys X UNKNOWNe =
€ TTHE INDEPENDENT VECTOR Y STORED AS THE (K+1)TH COLUMN OF B .
c R IS (KXK+1)e THE SOLUTION ALGORITHM PROGRESSES ACROSS
"""" € CALTMNE Th THE RIGHT, CHOOSING THE CCLUMN ELEMENT WITH LARGEST
C__MODULUS AS THE PIVOT. IF THIS FLEMFNT IS LESS THAN ELMIN, FLAG
T 1S SET TO 1te AND A RETURN TO THE CALLING PROGRAM IS EXECUTED.
___C__FLAG 1S RETURNED AS 0e IF NORMAL COMPLETION OCCURSe FLAG SHOULD
TTTTETTTALNAYS BE TESTED ON RETURN TO CALLING ROUTINE. e
C KP1 IS K+1s REQUIRED FOR VARIABLE DIMENSIONING
TTTTETTTON RETURNs SCLUTION VECTOR IS IN LAST COLUMN OF B o REPLACING Ye
[«
DIMFNEICN TB(K,KPYly T T T h T g
TTTTTTTTTTTTELAG S Al Tl I oy e il
c - L e
C__FIND LEADING ELEMENT WITH GREATEST MAGNITUDE g
C
DO 6 J=1sK d ;=
M=)
N = J+1 o b e e AT e T il
DG 2 L=N»K e )
IF (ABS(B(MsJ))eLTeABS(BI{LsJ))) M=L
2 CONTINUE
IF (ABS(B(MsJ))eLTeELMIN) GO TO 10
C
C INTERCHANGE JTH AND MTH ROWS T
C
DO 3 L=J,KP1 o
T = B8(Js)
B(JsL) = B(MsL)
E(MsL) =D i
3 CONTINUE i
C
C__ZERO OUT PIVOTAL JTH COLUMNs SKIPPING PIVOTAL JTH ELEMENT
C
C__DIVIDE JTH ROW BY PIVOT
c

DO & M=Ns+KP1

BUJWM) = BUIsM) 7 B(JsD)
4 CONTINUE

DO 6 M=1+K

C M DFETERMINES ROW BEING MODIFIEDs ONE WHOLE ROW AT A TIME
C
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IF ( MeEQed ) GO TO &
DO 5 L=NaXP1

C_ L DETFRMINES ELEMENT IN THE MTH ROW
B(MslL) = B(MsL) = B(MsJ) # BiJsl)}
eSO CONTINVE L e
& CONTINVE
_____ Q - . . O
RETURN
10 FLAG = 10, = . = e
RETURN
— END s . e ——mm — —mm
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FUNCTION COFF({1,J)

THIS FUNCTION CALCULATLS THE BINOMIAL COEFFICTENT (

)
( J)

[a]l aNal gl

DIMENSION BINOM(15415 )

IF(JeNESO} GO TO 1
COEF = _1,
GO T0O 31

J_COEF = BINOM(1sJ)

IF(COEFeNEs0s) RETURN
IF(J=11 29703
2 COEF = |
GO _T10_31
3 CONTINUE
Ke I-J+]

COEF = 1.
DO_10 L =Kol ___
COEF = COFF¥L
10 CONTINUE
TTTTTTTTTTTTTTTTBRO 20N =L,y T T T
COEF = COEF/ N

20 CONTINUE
BINNDM(TsJ) = COEF

Dl RFETURN - - T T

ENTRY INIT
TI 30 K=Y 1% T B I
DC 30 L=1,15
BIROMIKCT = U. Tt T

30 CONTINUE

31 CONTINUE —
RETURN
FNS S e T e e
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SUBROUTINE INVERT(BsK sK2sXMINsFLAG)

€ TTHTS SUBROUTINE SETS UP A UNTT MATRTX ADJACENY Y6 BTKK)
C__ELEMENTARY ROW OPERATIONS ARE THEN PERFORMED ON THE NEW K X 2K MATRIX
C_T0 REDUCE B(KsK) TO A UNIT MATRiXs THIS WILL PLACE THE INVERSE OF
C. THE MATRIX B(K,K) IN THE RIGHT HALE OF B(Ke2K) ___
C ON EXIT» THE INVERSE OF B REPLACES 8
C__B_1S AN _ARRAY OF 2#K##2 LOCATIONS CONTAINING_THE MATRIX -
C K IS THE DIMENSTON OF THE SGUARE MATRIX B
C K2 I8 2%K _
C XMIN [S THE SMALLEST ALLOWABLE MAGNITUDE OF THE PIVOT
C___FLAG WILL BE RETURNED AS 0. IF THE INVERSION WENT OFF OK
C TFLAG WILL BE RETURNED AS 10. IF A PIVOT ELEMENT WAS TOO SMALL
C___FLAG_SHOULD BE TESTED AFTER EACH CALL TO THIS ROUTINE
c
DIMENSTON B(K»K2) o
3
FLAG = 0. o o
c
C___SET UP UNIT MATRIX L o
c
DO 1 I=1,K
00 1 J=1+K
B(IsK+J) = 0o i
TFITeEGeJ)  BII+K¥I) = 1.
1_CONTINUE } N
c
C__FIND LEADING ELEMENT WITH GREATEST MAGNITUDE
c
DO_6___J=1,K X o
M= J
N = J+1 - - - . —— e T T
DO 2 TLENK oo o
IF_(ABS(B(MsJ))eLToABS(B(LsJ))) M=l
2 CONTINUE
IF_(ABS(B(MsJ))eLT.XMIN) GO TO 10
c
C___INTERCHANGE _JTH_AND_MTH_ROWS e
q
DO 3 L=JsK2
D= B(JsL)
BiJsL) = BIMaL) L e .
T(MsL) = D
- 3_CONTINUE e == = —_—— -
c
C__ZERO OUT PIVOTAL JTH COLUMN. SKIPPING PIVOTAL JTH ELEMENT
3
C__DIVIDE JTH RQW BY PIVOT ) i
c
DO.__ 4 __M=NsK2 R o o
BUJsM) = B(JsM) 7 B(Jed)
4 CONTINUE

DO 6 M=14K

IF ( MeEQed ) GO TO 6
DO 5 L=N+K2

L_DETERMINES FLEMENT IN THF MTH ROW

[alaNal

BIMoL) = BIMsL) = B(MsJ) # BiJsL)
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5 CONTINUE
e 6 CONTINUF
C
C _INVERSE OF B 15 NOw IN RIGHT HALF OF B(Kwk2)

C NOW MOVE B INVERSE TO wHERE B wAS
D07 _I=1.K

DO 7 J=1,K
e B(IyJ) = BUIeJ+K) .
7 CONTINUE
RETURN PO A —
10 FLAG = 17
___________ RETURN R e L SN USSR
END

N
i

i
¢
i
]
. |

c
e

- Semn = sene S i
o~
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" FUNCTION MINUSTEN)
¢

€T THIS FUNCTION RETURNS (=1)%#N 4 O4LEeNeLEL19
C

DIMENSION M(20U)
_ DATA((MII)sI=14520G)= ]o°1010‘1919-191v-1910-1’10_’101'-1'1ov'lol__o.'__lro s

1 1e-1 )
. MINUSLT = M{N+1)

k RETURN .
e END . e _ o sy
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SUBROUT INE NORMAL (AsPROD sMsN)

(Ciee o g T - P B e e R
C THIS SUBROUTINE MULTIPLIES A#(A-TRANSPOSE), PUTS PRODUCT INTO PROD
C

A IS (MXN)e PRAD 1S THEREFORE (M X M)

[a)

_-DIMENSION A(MsN) » PROD(MsM)

D0 1 I=1M .
DO 1 L=1sN
PRADI( 1oL 13T,
DO 1 J=l,eN
1_PROD(IsL) = PROD(JoL) + A(IoJIMAILWJ)

RETURN Tt e
END S — P e

Logoioch
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SUBROUT INF MXMULTIAWBYCoMsNIK )

TiHIS SUBROUTINE MULTIPLIES MATRIX A BY MATRIX B™ AND STORES THE ~

PRODUCT IN Ce

(C_CANNOT BE THE SAME AS A OR Be)

A 1S (M X N)

B IS (N X K}

C IS (M X K)_

[alaNallaValiaNalla!

DIMENSION__A(MsN)

(g}

DO 1 __1=1sM

DO 1 L=1.K
C(Isl) = Le

DO 1 J=1»N

s BINsK) o CUMeK}

ClIal) = CUIsL) + AlIsJd) * BCJsL)

1 CONTINUFE
RETURN

END
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SUBROUT INE MXTMUL (A B +CsMaNsK)

DIMENSTON A(MsNYs BIMsK) » C(NsK)
THIS SUBROUTINE MULTIPLIES (A-TRANSPOSE) * B, PUTS PRODUCT IN C

A IS (M X N)
A-TRANSPOSE IS (N X M)

alalHaNallsl 2

B IS (M X K)

C IS (N X K) e T WEm W Ry W —-
DO 1 I=1,N
DO 1 L=1sK e L

CiIsL) = 0o
DO _ 1 J=1sM

T7CUTW0) = ClIsL) + ACJs1) ¥ B(J51y
RETURN

END ety - Ry S
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SUBROUTINE SIGX(TROW »11 74X +s¥ +EONSTH
_COMMOM /SIZES/ NEQs Ms MPRs NXs NUNK s NUNKP1

TTCOMMON /INTT/Z TINITASINITBS INITC(2) s INITO(2Y INTTKIT2)s TNTTKZ,

1 INITK3(2) s INITKG » INITKS, INITK6(2) o INITK7,

2 INTTKB(2) v INITK9 5 INTTK10s INITKII(2)» INITOM{2)
COMMON 71/ G{148157) s UN(56+57) o E(2) » NU(2) »

1 AINy BINs CINy VF

JYPE_REAL NU_ . B T erereml e el
DATA  (INITA=10) : (INITH=16) » (INITC=22+41) » (INITD=29+48) »

1 CINITK1=1438) s (INITK2=2)s(INITK3=3,39)s (INITK&=4) 0
2 (INITKS=5) o (INITK6=654U) » (INITK7=7) » (INITK8=8+41)
3 CINITK9=91 » (INITK1O=10) s (INITK11=11942) »{INITOM=37,+56)

c

C___THE VARIOUS INITS DEFINE THE POSITION OF THE UNKNOWNS IN THE_ G MATRIX

14

C__INITA+1 WILL BE THE COLUMN OF UNKNOWN Aly REGION 1

C INITB+1 WILL BE THE COLUMN OF UNKNOWN Bl, REGION 1

C__INITC(J)+1 WILL Bt THE COLUMN OF Cls REGION Js J=Isl1 N

CTINTTOTUUT+1 WILL BE TAE COLUMN OF D1ls REGION Jy J=14T1

C

TTCTTUNOTE TTHAT A1587.C1 DO NOT EX1ST, SO THAT Al OVERLTES TNITKIT,
C_B1 OVERLIES A7+ AND €1 OVERLIES B7TY

INITKJ WILL BE COLUMN OF KJ s J=24643557+9510 -

C

€ INTTKI(C)Y WILL BE COLUMN OF KJy REGION L » J = 14376,8,11 5 L=141T
C__INITOM(J) WILL ot COLUMN OF OMEGA ZERO IN REGION J » J=Isll
C
C

A s B s K2s Kbs K59 KT+ K9y K1Us DO NOT EXIST IN REGION 11

GUIROWSINITKI(II) ) = GUIROWsTINITKI(IT))+ CONSTH foex®y

GITROWSINITKA(TT) ) = GUTROWSINITKG (TT))+ CONSTH 2,
GO_TO 5410y 11

5 CUIROW» INTTKZ)
G(IROW. INITKS)
MIT = MPR
GO _1Q_15

10 MIT = M

15 00 45 M1 = 1y MII
M3 = MY+ 1
DO_45 N2 = 1sM3
NT = N2 - 1

_IF(MIeNEeNL) GO TO 20

TS TGUIROWY INITK2) + CONST® 2, %X
G(IROWs INITK5) + CONST* 6oy

wou,

XD = 1.
. XC = X - _
. SRS T ) o
XA = XC o
GO 10 25 T T T
20 XD = x%*(2#(M1-N1}) .
XC = X # XD - )
XB = Xi o ) A , ,
XA = XC ’ : =L e
25 IF(NleNEaU) GO TO 30
YO =1. R — — i
YC =0e
Y8 =¥C T
e YA BYC
GO TO 35 B
30 _IF(N1eNEo1) GO 10 33 i )
YA = 1. -
GO _TO 34

33 YA = YR#(#11-72)
34 YB = ¥ # YA
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YC = YR

T35 GUIROWSINITDITTI+M1) = G(IROWSINITD(1T11+M1)+ CONST ~
1 * MINUSL(NLI#*2o%(N1+1)#(2.%N1+1)% YU * XU

2 * COEF (2¥M1+1 »2*N1+1)
. JF{M1eEQel) GO _TO 44

o GUIROWINITC(III4M1) = GIIROW,INITC(II)+M]1)+ CONST
* MINUSL(NL)¥2.*N1*(Zo¥N1+1e) * YC * XC
2 * COEF(2#M1+1 42¥N1+1)
GO TO (40s64) 11
40 _GUIROWsINITB+M1) = GUIROWsINITB+41) + CONST
1 * MINUST(NII¥2.#N1*(2.%N1+1e) * Yi * XH
2% COEF(2%M142¥N1)
GUIRONS INTTA+M1) 2 GUIROWy INITA+M1) + CONST

1 ¥ MINUSLINI)*2.*N1#(2.%N1=14) * YA * XA

2 * COEF(2¥M1,2#N1) -
___aa CONTINUE e
45 CONTINUE
_______ RETURN o ~
- R s e 20 6 & aaGoEEEr—
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SUBROUTINF SIGY(TROWsII sXsYsCONST)
TYPE_REAL_NL e -
COMMON /STZES/ NEGs Ms MPRs NX» NUNK s NUNKBI
COMMON /1/ _GU14B+57) s GNI56557) s E(2) » NUL2)

1 AINy RINs CINy VF

COMMON _/INIT/_ INITASINITBsINITC(2)sINITD(2)y INITKL(2)s INITK2,
1 INTTK3(2) 5 INITK& 4 INITKS, INITKE(2) s IMITK7s
2 INITK8(2) » INITK9 5 INETK1O0s INITK11(2)s INITOM(2)

GUIROW,INTTXB(I1) )
G{IROWs INITKI1(11))_
GO TO (5,10} I1
5 G(IROWsINITK9) = G(IROWsINITK9) + CONST ¥ 24% Y
GIIROWSINITKIO) = G(IROW,INITK1IN) + CONST * 6. * X
MI1 = MPR
G0 70 15
10 MIT = M
15 DO 45 M1 = 1s MIT
M3 =M1+ 1
DO 45 N2 = 1sM3

G(TROWSINITKB(IT) } + CONST % g% X * Y
GUIROWSINITKIYI(II})) + CONST * 2,

‘now

Nl = N2 -~ 1 L — ee——— —
[FIMI-NENI+1) 6o 70 20
XD = 1o e N —_—
XC = X
XR = XD - o I
XA = XC
GO TO 30

30 TFIMINEZNT) GO TG 25 ST T
XD = Ve
XC = 0. T e—— T R
XB = 0- ~ I - = N
H XA = 04 E
GO Y0 30
3ETXD = K*F{2¥(AI-NI=17) R

XC = X* XD o
X8 = XD
XA = XC T

i 30 IF(NlaNEeu) GO TO 35
YA = 1l e . . e o e ES——— ——
GO TO 40

35 YA = Y _#%(2 ¥N1)
40 YR = Y * YA

YC._= Y8
YD = Y * Y8
GUIROWSINITDCII)+M1) = G(IROW,INITU(II)+M1)+ CONST

1 * MINUSTINT I %2e% (M1=N1)# (2% (M1=N1)=10) * YD #xD
2 % COEF(2#MI+1 y2#N1+1) -
IF(MleEG. 13 GO TO 46
C
GEIROWS INITCCIT)+M1) = GUIRNW,INITC(TI}+M1)+ CONST
1 #(24%(MI-N1)+1a)%2.%(MI-N1I*MINUSTI(N1) * XC * YC
2 * COEF(2%M1+] »2#N1+1)

=00 1TO) Ul sregersliII] _
42 GITROWs TNITE*NMI) = G(IRGwsINITB+M1) + CONST

1 * MINUSIINL)I#2%¥(MI=N1)*(2+%(M1=H1)}=1e) *YB #* XB )
2 * COEF(2%M142%N1) T el
GUIROWs INITA+MI) = GUIROWsINITA+MI) + CONST
TTTOTTYTT T % MINUSLINI I #2e%(MI=N1)#*(De#(M1=N11+1e) * XA #* YA
2 * COEF(2%M142%N1)

46 CONTINUE

.45 CONTINUE
RETURN
END_.
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SUBROUTINE  TAUXY (IROW
CCOMMON /17 G(14Bs57) »

I1sXsYsCONST)
LN(56+57) » EH2

1 AINy BINs CINs VF

COGMMUN /SIZFS/ NEQe Me PMPRs NXs NUNK o NUNKPL

COMMON /INIT/ INITAWINITBeINITC(2)sINI
1 INITK2(2) » INITKG » INITKSs

2 TINITKB(2) s INITKS » INITK1O,

_TYPF REAL NU

G(IROWsINITKI(IT)
GUIROW INTTK3(II))
______________ GIIROW»INITK8(11)

GO TO (5+1u)s 11
5 G(IROWsINITK2)

GUIROWs INITK9)
MI] = MPR

Yo
)
)

GOIROWS INTTKI(II))
GUIROWs INITK3(I1))
GUIRCWS INTTKB(I1))

'Il |l!ll

= GLIROWs INITK2)
= G(IROWs INITKS)

GO TO 15
10 ML =™
TTTTYSTDo 45 M1 = 1 MII
M3 = ML + 1
DO 45 N2 = 1, M3

Nl = N2 -1

XD O

IF{Ml1aNEsN1) GO TC

20

) oe NUC2) s

TO(2)s INITKI(2)s INITKZ,
INITK6(2) o INITK7s
INITK11(2)s INITOM(2)

~3,%Y%%2 # CONST

-CONST
- COMST * 3.%X¥%2

- 2¢% CONST * Y

— 24% CONST * X

20 XD
X_* XD

X¥®(2%(M]1-N1)-1)

XD
XC

(A
o
[ TR e IR T TR
(o]
N
w

25 IF(N1eNELD
YA = 0.

Yy GO TO 30

Y Ex (2%Ni-)
Y * YA

30 YA

1

35 YC YB

Y*YC

<
@
n uwtn n

GUIROWSINITD(II)I+M1) = GUIROWSINITD(II}+M1) — CONST
1 * MINUSLI(N1) *(24%N1+2e¢) #* 24%(M1-N1)* YD #XD

2 % COEF(2%¥M1+1 »2#N1+1)

IF(MleEQel) GO TO

44

GUIROWSINITC(II)+M]1) = G(IROWSINITCUII)+M1) - CONST

1 * MINUSI(N]
2 * COEF(2#M1+

1¥ (2e%N1+1e) ®#{2,%#(M1-N1)+1s) * YC * XC

1_s2#N1+1)

GO TO (40444411
40 G(IROWsINITR+M])

= G(IROWsINITB+M1) - CONST

1 ¥ MINUSTINTI* (2.%¥N1+1)% 2.%(M1-N1) * YB # Xg
2 #* COEF(2%M14+2%N1)

G(IROW, INTTA+MI) = G(IROW»INITTA+M1) - CONST
1 * MINUSI(N1)*24#N1*(24%#(M1=N1)+1e)%XA%YA

2 * COEF(2#M]142%N1)

44 CONTINUE

4% CONTINUE
RETURN

END
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SUBROUTINE U! IROWsT]sXsYsCONST)
COMMON 71/ G(148557) » GN(56+57)
1 AINs BINs CINs VF

COMMON /STIZES/ NFQs Ms MPRy NX, MUNK

» NUL2) &

+ NUNKP1

I COMMON /INTT/ "INITASINITBYINITCIZ2) o INITD(Z)s INTTKI(Z7y TNTTKZ,
1 INITK3(2) » INITK4

27777 T INITKREU2Y s INITKS

TYPE REAL NU

T ONENU = 1e - NUGTTY

T GUIROWSINITKILCTT )

TTETTROWLINTTKI(IT) 5

TWONU = 2o = NUCIIT)

0e = NUCTIY

1

G(TROW, INTTRATTI )

_GUIRGWsINITK6(11Y)
GITROWSINITKBII1))

1

it H

GUIROWSINITOM{IT))

GO TO T5,10Ys 1T~~~ 77
5 G{IROWsINITKZ)
T T GTUIROWYINTTXS)

GIIROWs INITKS)

nowonoun

ECONS L TIT=11%( (1a+NUI2IIRELL)/ZLE(2) ¥ {1a+NUI1) ) ) =T o) +1 o) % CONST

GUIROWS INITKLICIT) ) +ECON® (3 ¥ONENURY#X#%2
TWONURY*%3
GUIRCWS INITK3I (I 1)) +ECONRT=TWONURYY ™~
GUIROWYINITKE( T1))+FCON¥ (2 o #ONENU*X )
GUIROWs INTTKB(IT))+ECON® (34 #REVNUSY#X##7
ONENY % Y##3)

GIROW

’

sINITKII(IT) )+ECON®* (2 *REVNU#X)

INTTK6(2) » INITK7y,
INITKI1(2)s INITOM(Z)

GUIROWSINITK2 )+ CON®{UNENURX® %2~ TWONU*Y#%2 )
GUTROW s INITK4 ) +ECON*REVNU o
GOIROWS INITKS ) +ECON® (6 o #ONENU*X*Y)

“GITROGWTINTVKTY = G(TROW INITX)+ECON® (7o ¥REVNURXRY) = = ==mm= == ooee
GUIROWSINITKIN)= GEIROASINITKIN ) +ECON (=2 #ONENUR Yr#2
I TUURISEREVNUSXR®Z) 0 T tmo s

MIT = MPR

e G T Y 5
10 M]p = M
TTISTDOTES VT = 1T MIT T

M3 = M1 + 1

TTTTTTT TTREZ e

DO 45 N2 7="1s M2 "7

Nl = N2 - 1

TTTIFIMILNEWNT) GO 1O 20

xXD2 Ce

Hn

xB2

20 X02

TTTUTTABTXDT = OXTWW(RE(IMT-ATY+T)

XA2

.

(4'

T,

de 25
%3

X
i

(2 (V1=-N1)=-1)
* XD2
3 -

1=
H ol wu

xXC2
TXB7T
XA?

b
XC2

XCl = x # xD1

TTUXBY =TXDY

XAl = XC1

IFTNT«NFE L) GO TO 3%
YD1 )

vC1 0

Y31 Ne

YAI 0.

YA2 = 1l

GO TO 4N

IF(NleNEol) GO 10 25
YD1 = Y*¥)

@]
Y1
YAl

o nou

Y
v
le
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B,

o e RS
35 YAl = Y#*¥(2¥N1-2; -

YCl = YR]
g MEL o . : - N —

=<
*x
<
>
—
'
‘
'
'
|
s [ VU WE

g s oeran 0 ggo oo T T 00
YD2 = Yy#Y(C2 e e
GUIROWSINITDUITY4M1) = GUIRCWHINITO(I1V4M1)+ ECON

) * MINUST(NL) # (ONENUR(2#N]1+]1e)%2e%(N1+1a)/ (2% (M1=N1)+14)

R

IF(M1eEQe1) GO TO 44 o |

GUIROWSINITC(I{)+M1) = GUIROWSINITC(II)+ML}+ ECON !
YT W OMTNUSTANL) % (ONENU*(24%N1+1e)% N1/7(M1-N1+1e) ¥ YCT W XCY
2 + REVNU # (24%(M1=Nl)+la) * YC2 #XC? )
o _-'—_—“"miwcofF'-'“("Z";":W l'+ 1 ~g2<l*Nl<0-1 ) '
GND TO (42444 )] 1
47 GIIROWsINITB+MI) = G(IROWsINTTB+MY) + ECON
1 * MINUSIINL)*(ONENU%(24#N1+1)%2e%#N1/ (2% ({M1=N1)+1e) #* YHI#XB]
2 + 2O RREVNUTM1-NL) #YB2 * XH? ) ST =
¥ 3 * COEF(2"M1y2#N1)
T UETUTROWS INITA+ML) = GUIROWIINITA+ML) + SCON
1 * MINUSLIN1) * (ONENU%*  N1#(24%N1-1)/ (M1-N1 +14)
2 THTVATHXAY ¥ REVNUSR(2o# (M1=N1DY+1a) * YA2 ¥ XA2 )
3 ® COFF(2#M1424N1) o
44 CONTINUE ' C - {
45 CONTINUE i
e RN R S T
END . o emem—

. L B

L o =

R T
-~

wu

4 ¥
g ¢
e mrm e e — — :
; - T e - ——— :
g .
y: p— [ by o L. ™~
r: e L
é
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SUBROUTING VIIROWeTTeXsYsCONST)

COMVON /17 GUILELSTY o GNIBAET) o EL2) o NUL2)

1 AINs HBINs CINa VF

) COMMON /SIZES/ NEGy Me MPRs NXs NUNK s NUNKPL S

T COMPON /INIT/Z  ITOiTASINITSsINITCI2Y s INITO(2Ys INITKLI(2) s INITKZ,
o INITK3(2) » INITRG » INITKS. iNITKG6(2) 5 INITV7,

) INITKBL2) » INITKO o INITKIOs INITKLUI(2)s IMITOM(2)
CTYPE REAL NU

REVNL) = DNy ~ NUCILT)
‘ e THONU = Pe = NULIDY pa
ONENU = 1o = NJ(IT)

TORCONS(CIT=10% 001 «+NU(2V)*E (T )/ (E(2 1% (1a+NU(1)))=10)+10)}* CONST
| — GUIRW INITK3 (T 1)+ CON¥REYNU*X
GUIROWSINTTKI(IT))+ECON (3¥RFVNURX*Y 55
ANFMU* X %% )
GUIROWs INITKE(]

TTGCIROW Y INTTK3(I 1))
_ _GUIROWSINITK1(II))
1

VI+FCON¥REVNLI*Z o %Y

G(IRCWINITKE(T1)) )
1 VIFECONU (ONENURY XY #%2 %73,

T TG IR W S INT TR (] GUIROWS INTTKE (!
1 TWONL) * X#%2)
TGUTROWSINITKLI(II)) = GUIROWSINITKILI(IT) )+ ECON¥*2*ONENU*Y
G(IROWINITOM(II)?! = GUIROWSINITOM(IT)) + ECON#*(=-ONENU%X)
! GO TO (5,1u3s 11 e 4 = == T T
& GIIROWs INITK2)= GUIROWsINITK?) + ECON* 24#REVIILJ # X #* Y
TTTTRITROWL INTTKS ) = GUIROWSINITKS) + FCON®2¥(—ONFNUX¥¥PLDEVNU® Yasoy
GUIROWLINTTKT7)= GIIRDWLINITKT) + ECON#REVMY
"""""""""" GUIROWHS INITKG ) = GUIROWsINITKS) + ECON®(ONENURY*¥2-TWOMUN¥ X#%2]
GIIROWSINITK1N) = GUIROWSINITKICY +ECON®* ONENU%64#X%Y
MIT ="%PR" o . ‘
GO TO 15
T MIT =M
15 DO 45 M1 = 1
M3ITETVMT 4L
| DO 45 N2 = 1, M3
NI = N2 - 1 P o B TR
IF(M1.NELN1) GO TO 206
XAT e = =
- XB1 Oe
XC1 0.
XD1 O,
XA7 X
le
X
le
! IR O
20 IF(MleNELN1+1) GC TO 25
XBl = 1. - el
i XDl = 1.
GO TO 28
X##{2%(M]=N1=-1))
X817 -
X # XR1
XC1
X* XAl
X* XB2

I
I

o e e e —

M1l

28 XxCl

X872
3N [F(YeNFeDN

; YAZ = O
Y82 = 1.

¥é =1L

GO TO 40

x
@
N
Hin wtn wjn atay

G T o

DL
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]
- S
»
36 YA2 = Y#*#(2#N1-1)
. YB2 = YRYAD e Bt R R
YC? = YB2 {
40 YD? = y*vR2 ]
7 YAl = YD2 i
__YBl = _Y®YA] e e = =
YCl = YBI1 é
... YD1l = Y*vCl y . —C e — i W — e {
i G(IROWS INITD(II}+M1) = GUIROWSINITL!Ii)+M1)+ ECON
] * MINUST(NL) *(ONCNU*2e* (41 =N1)%(24%(0i1=-N1)=10)/(2e%#N1+3s) —
2 # XDl * YD1 + REVNU¥2. #(N1+l.) % YD2 % XD2) p
P * COEF{2%M1+]1 +2#N1+1) P e 4
IF(M1.EQel) GO TO 44
. GUIROWSINITC(II}+MI) = GUIROWSINITC(IT)+M]1)+ ECON L _ N
1 * MINUSLINI) *(ONENU*(2.%(M]1=N1)+1e)¥ (M1-N1)/(N1+1.)
2 * yC1 % XCl + REVNU*(2e%N1+le) * YC2 *XC2 )
3 * COEF(2*M1+1 »2%N1+1)
________ GO _TO (42944511 - - e
42 GUIROWsINITB4M1) = G(IROWsINITB+M1) + FCON
1 * MINUSTINII*#(ONENU*{M]I-N1)*(2e#(M]1=N1)=1a) /(N1+1s)
2 ¥ XB1 * YB1 + REVNU * (2,#N1+1e) * YB2 # AB2) D
3 * COEF(2#M]1,42%N1)
G(IROWs INTTA+MI) = G(IROWsINITA+M1) + ECON
* MINUSLINI)*(ONERU* (2% (M1=N1)410e) *¥2.%(M1=-N1)/(2+%N1+1a)
TTTZTTTTTTRUVAT % XAL + REVNU#2.%N1 * YA2 ¥ XA2 ) T
- * COEF(2%M142%N1)
44 CONTINUE 7 ’ T o
! 4% CONTINUF - . -
f RETURN
END L ——— = e — 000 ee— —
1089 "CARDS
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